基于大数据的全球电子游戏销量与评分数据分析系统 | 5大核心功能模块:《全球游戏数据分析系统》Spark+Django实现方案

76 阅读5分钟

💖💖作者:计算机毕业设计江挽 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

基于大数据的全球电子游戏销量与评分数据分析系统介绍

《全球电子游戏销量与评分数据分析系统》是一个基于大数据技术栈的综合性数据分析平台,采用Hadoop+Spark作为核心大数据处理框架,结合Django后端框架和Vue前端技术构建。系统通过收集和分析全球范围内的电子游戏销量数据和用户评分信息,为游戏行业从业者、研究人员和爱好者提供深入的市场洞察和数据支撑。平台集成了用户管理中心、游戏销量信息管理、数据大屏可视化展示等核心模块,能够实现游戏市场趋势分析、游戏类型口碑分析、区域平台偏好分析、游戏厂商实力评估以及销量口碑关联性研究等多维度数据分析功能。系统运用Spark SQL进行大规模数据查询处理,结合Pandas和NumPy进行数据清洗和统计分析,通过Echarts实现丰富的图表可视化展示,将复杂的游戏行业数据转化为直观易懂的分析报告和趋势图表,为用户的决策制定提供科学的数据依据。

基于大数据的全球电子游戏销量与评分数据分析系统演示视频

演示视频

基于大数据的全球电子游戏销量与评分数据分析系统演示图片

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于大数据的全球电子游戏销量与评分数据分析系统代码展示

spark = SparkSession.builder.appName("GameDataAnalysis").config("spark.some.config.option", "some-value").getOrCreate()
def game_market_trend_analysis():
    game_df = spark.sql("SELECT game_name, release_date, sales_volume, platform, genre FROM game_sales")
    monthly_sales = game_df.groupBy(F.year("release_date").alias("year"), F.month("release_date").alias("month")).agg(F.sum("sales_volume").alias("total_sales"))
    trend_data = monthly_sales.orderBy("year", "month").collect()
    platform_trend = game_df.groupBy("platform", F.year("release_date").alias("year")).agg(F.sum("sales_volume").alias("platform_sales"))
    genre_popularity = game_df.groupBy("genre").agg(F.sum("sales_volume").alias("genre_sales"), F.count("*").alias("game_count"))
    top_genres = genre_popularity.orderBy(F.desc("genre_sales")).limit(10).collect()
    yearly_growth = spark.sql("""
        SELECT year, total_sales, 
               LAG(total_sales) OVER (ORDER BY year) as prev_year_sales,
               ((total_sales - LAG(total_sales) OVER (ORDER BY year)) / LAG(total_sales) OVER (ORDER BY year)) * 100 as growth_rate
        FROM (SELECT YEAR(release_date) as year, SUM(sales_volume) as total_sales FROM game_sales GROUP BY YEAR(release_date))
    """).collect()
    seasonal_pattern = game_df.groupBy(F.quarter("release_date").alias("quarter")).agg(F.avg("sales_volume").alias("avg_sales"))
    market_concentration = spark.sql("""
        SELECT publisher, SUM(sales_volume) as publisher_sales, 
               (SUM(sales_volume) * 100.0 / (SELECT SUM(sales_volume) FROM game_sales)) as market_share
        FROM game_sales GROUP BY publisher ORDER BY publisher_sales DESC LIMIT 20
    """).collect()
    return {"monthly_trends": trend_data, "platform_trends": platform_trend.collect(), "genre_analysis": top_genres, "growth_rates": yearly_growth, "seasonal_data": seasonal_pattern.collect(), "market_share": market_concentration}
def game_reputation_analysis():
    rating_df = spark.sql("SELECT game_name, genre, rating_score, review_count, platform FROM game_ratings")
    genre_reputation = rating_df.groupBy("genre").agg(
        F.avg("rating_score").alias("avg_rating"),
        F.sum("review_count").alias("total_reviews"),
        F.count("*").alias("game_count")
    )
    reputation_categories = rating_df.withColumn("reputation_level", 
        F.when(F.col("rating_score") >= 9.0, "优秀")
        .when(F.col("rating_score") >= 7.0, "良好")
        .when(F.col("rating_score") >= 5.0, "一般")
        .otherwise("较差")
    )
    reputation_distribution = reputation_categories.groupBy("genre", "reputation_level").count()
    platform_ratings = rating_df.groupBy("platform").agg(
        F.avg("rating_score").alias("platform_avg_rating"),
        F.stddev("rating_score").alias("rating_variance")
    )
    controversial_games = spark.sql("""
        SELECT game_name, genre, rating_score, review_count,
               (review_count * rating_score) as weighted_score
        FROM game_ratings 
        WHERE review_count > 1000 AND rating_score BETWEEN 4.0 AND 6.0
        ORDER BY review_count DESC
    """).limit(20).collect()
    top_rated_by_genre = rating_df.filter(F.col("review_count") > 500).groupBy("genre").agg(
        F.max(F.struct("rating_score", "game_name")).alias("best_game")
    ).select("genre", F.col("best_game.game_name").alias("top_game"), F.col("best_game.rating_score").alias("top_rating"))
    return {"genre_reputation": genre_reputation.collect(), "reputation_dist": reputation_distribution.collect(), "platform_ratings": platform_ratings.collect(), "controversial": controversial_games, "top_games": top_rated_by_genre.collect()}
def regional_platform_preference_analysis():
    regional_df = spark.sql("SELECT region, platform, game_name, sales_volume, genre FROM regional_game_data")
    platform_preference = regional_df.groupBy("region", "platform").agg(
        F.sum("sales_volume").alias("platform_sales"),
        F.count("*").alias("game_count")
    )
    regional_totals = regional_df.groupBy("region").agg(F.sum("sales_volume").alias("total_regional_sales"))
    preference_with_percentage = platform_preference.join(regional_totals, "region").withColumn(
        "preference_percentage", (F.col("platform_sales") / F.col("total_regional_sales")) * 100
    )
    dominant_platforms = preference_with_percentage.groupBy("region").agg(
        F.max(F.struct("preference_percentage", "platform")).alias("dominant_platform")
    ).select("region", F.col("dominant_platform.platform").alias("top_platform"), F.col("dominant_platform.preference_percentage").alias("dominance_rate"))
    genre_regional_preference = regional_df.groupBy("region", "genre").agg(
        F.sum("sales_volume").alias("genre_sales"),
        F.avg("sales_volume").alias("avg_game_sales")
    )
    cross_platform_analysis = spark.sql("""
        SELECT region, 
               SUM(CASE WHEN platform IN ('PC', 'Steam') THEN sales_volume ELSE 0 END) as pc_sales,
               SUM(CASE WHEN platform LIKE '%PlayStation%' THEN sales_volume ELSE 0 END) as ps_sales,
               SUM(CASE WHEN platform LIKE '%Xbox%' THEN sales_volume ELSE 0 END) as xbox_sales,
               SUM(CASE WHEN platform LIKE '%Nintendo%' THEN sales_volume ELSE 0 END) as nintendo_sales
        FROM regional_game_data GROUP BY region
    """)
    market_penetration = cross_platform_analysis.withColumn("total_sales", 
        F.col("pc_sales") + F.col("ps_sales") + F.col("xbox_sales") + F.col("nintendo_sales")
    ).select("region", "total_sales", 
        (F.col("pc_sales")/F.col("total_sales")*100).alias("pc_penetration"),
        (F.col("ps_sales")/F.col("total_sales")*100).alias("ps_penetration"),
        (F.col("xbox_sales")/F.col("total_sales")*100).alias("xbox_penetration"),
        (F.col("nintendo_sales")/F.col("total_sales")*100).alias("nintendo_penetration")
    )
    return {"platform_preferences": preference_with_percentage.collect(), "dominant_platforms": dominant_platforms.collect(), "genre_preferences": genre_regional_preference.collect(), "penetration_rates": market_penetration.collect()}

基于大数据的全球电子游戏销量与评分数据分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计江挽 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目