Python Django大数据毕设:大气和海洋动力学数据系统实战案例

36 阅读5分钟

前言

💖💖作者:计算机程序员小杨 💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💕💕文末获取源码联系 计算机程序员小杨 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目 计算机毕业设计选题 💜💜

一.开发工具简介

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

二.系统内容简介

《大气和海洋动力学数据分析与可视化系统》是一套基于Python Django框架开发的大数据处理与可视化平台,专门针对大气和海洋动力学相关数据进行深度分析和直观展示。系统采用Hadoop分布式存储架构结合Spark大数据计算引擎,能够高效处理海量的气象和海洋观测数据。前端采用Vue框架配合ElementUI组件库和Echarts可视化图表库,为用户提供友好的交互界面和丰富的数据展示效果。系统集成了用户管理、数据管理、可视化分析、数据大屏展示等核心功能模块,支持温室气体分析、宏观趋势分析、极地动态分析以及海洋动力学分析等多个专业分析维度。通过运用Pandas和NumPy进行数据处理,结合Spark SQL进行大数据查询,系统能够实现从数据采集、存储、处理到可视化展示的完整数据分析流程,为气象和海洋科学研究提供了一个集成化的数据分析工具平台。

三.系统功能演示

Python Django大数据毕设:大气和海洋动力学数据系统实战案例

四.系统界面展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

五.系统源码展示


from pyspark.sql import SparkSession
from django.http import JsonResponse
import pandas as pd
import numpy as np
from django.views.decorators.csrf import csrf_exempt
import json
from models import AtmosphericData, OceanData, GreenhouseGasData

spark = SparkSession.builder.appName("AtmosphericOceanAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

@csrf_exempt
def atmospheric_ocean_data_analysis(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        start_date = data.get('start_date')
        end_date = data.get('end_date')
        region = data.get('region')
        atmospheric_data = AtmosphericData.objects.filter(date__range=[start_date, end_date], region=region)
        ocean_data = OceanData.objects.filter(date__range=[start_date, end_date], region=region)
        atm_df = pd.DataFrame(list(atmospheric_data.values()))
        ocean_df = pd.DataFrame(list(ocean_data.values()))
        if not atm_df.empty and not ocean_df.empty:
            spark_atm_df = spark.createDataFrame(atm_df)
            spark_ocean_df = spark.createDataFrame(ocean_df)
            spark_atm_df.createOrReplaceTempView("atmospheric_data")
            spark_ocean_df.createOrReplaceTempView("ocean_data")
            correlation_query = """
                SELECT a.date, a.temperature as atm_temp, a.pressure, a.humidity, 
                       o.temperature as ocean_temp, o.salinity, o.current_speed
                FROM atmospheric_data a 
                JOIN ocean_data o ON a.date = o.date AND a.region = o.region
            """
            correlation_result = spark.sql(correlation_query)
            correlation_pandas = correlation_result.toPandas()
            temp_correlation = np.corrcoef(correlation_pandas['atm_temp'], correlation_pandas['ocean_temp'])[0,1]
            pressure_analysis = correlation_pandas['pressure'].describe()
            humidity_trends = correlation_pandas.groupby(correlation_pandas['date'].dt.month)['humidity'].mean()
            salinity_distribution = correlation_pandas['salinity'].quantile([0.25, 0.5, 0.75])
            current_anomalies = correlation_pandas[correlation_pandas['current_speed'] > correlation_pandas['current_speed'].quantile(0.95)]
            analysis_result = {
                'temperature_correlation': float(temp_correlation),
                'pressure_statistics': pressure_analysis.to_dict(),
                'monthly_humidity_trends': humidity_trends.to_dict(),
                'salinity_distribution': salinity_distribution.to_dict(),
                'current_anomalies_count': len(current_anomalies),
                'total_records': len(correlation_pandas)
            }
            return JsonResponse({'status': 'success', 'data': analysis_result})
        else:
            return JsonResponse({'status': 'error', 'message': 'No data found for the specified parameters'})

@csrf_exempt
def greenhouse_gas_trend_analysis(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        gas_type = data.get('gas_type', 'CO2')
        time_period = data.get('time_period', 'yearly')
        gas_data = GreenhouseGasData.objects.filter(gas_type=gas_type).order_by('date')
        gas_df = pd.DataFrame(list(gas_data.values()))
        if not gas_df.empty:
            spark_gas_df = spark.createDataFrame(gas_df)
            spark_gas_df.createOrReplaceTempView("greenhouse_data")
            if time_period == 'yearly':
                trend_query = """
                    SELECT YEAR(date) as year, AVG(concentration) as avg_concentration,
                           MAX(concentration) as max_concentration, MIN(concentration) as min_concentration,
                           COUNT(*) as record_count
                    FROM greenhouse_data 
                    GROUP BY YEAR(date) 
                    ORDER BY year
                """
            elif time_period == 'monthly':
                trend_query = """
                    SELECT YEAR(date) as year, MONTH(date) as month, 
                           AVG(concentration) as avg_concentration,
                           STDDEV(concentration) as std_concentration
                    FROM greenhouse_data 
                    GROUP BY YEAR(date), MONTH(date) 
                    ORDER BY year, month
                """
            trend_result = spark.sql(trend_query)
            trend_pandas = trend_result.toPandas()
            if time_period == 'yearly':
                growth_rates = []
                for i in range(1, len(trend_pandas)):
                    current_conc = trend_pandas.iloc[i]['avg_concentration']
                    previous_conc = trend_pandas.iloc[i-1]['avg_concentration']
                    growth_rate = ((current_conc - previous_conc) / previous_conc) * 100
                    growth_rates.append(growth_rate)
                trend_pandas['growth_rate'] = [0] + growth_rates
            seasonal_analysis = trend_pandas.groupby('month' if time_period == 'monthly' else 'year')['avg_concentration'].agg(['mean', 'std']).reset_index() if time_period == 'monthly' else None
            concentration_forecast = np.polyfit(range(len(trend_pandas)), trend_pandas['avg_concentration'], 2)
            forecast_values = np.polyval(concentration_forecast, range(len(trend_pandas), len(trend_pandas) + 5))
            analysis_result = {
                'trend_data': trend_pandas.to_dict('records'),
                'seasonal_analysis': seasonal_analysis.to_dict('records') if seasonal_analysis is not None else None,
                'forecast_next_5_periods': forecast_values.tolist(),
                'total_growth_rate': float(growth_rates[-1]) if growth_rates else 0,
                'analysis_period': time_period
            }
            return JsonResponse({'status': 'success', 'data': analysis_result})
        else:
            return JsonResponse({'status': 'error', 'message': 'No greenhouse gas data found'})

@csrf_exempt
def ocean_dynamics_visualization(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        depth_range = data.get('depth_range', [0, 1000])
        analysis_type = data.get('analysis_type', 'current_patterns')
        ocean_data = OceanData.objects.filter(depth__range=depth_range)
        ocean_df = pd.DataFrame(list(ocean_data.values()))
        if not ocean_df.empty:
            spark_ocean_df = spark.createDataFrame(ocean_df)
            spark_ocean_df.createOrReplaceTempView("ocean_dynamics")
            if analysis_type == 'current_patterns':
                current_query = """
                    SELECT latitude, longitude, depth, current_speed, current_direction,
                           temperature, salinity, 
                           CASE 
                               WHEN current_speed > 1.5 THEN 'Strong'
                               WHEN current_speed > 0.8 THEN 'Moderate'
                               ELSE 'Weak'
                           END as current_intensity
                    FROM ocean_dynamics
                    ORDER BY depth, current_speed DESC
                """
            elif analysis_type == 'temperature_distribution':
                current_query = """
                    SELECT depth, AVG(temperature) as avg_temp, 
                           STDDEV(temperature) as temp_variance,
                           MAX(temperature) as max_temp, MIN(temperature) as min_temp,
                           COUNT(*) as measurement_count
                    FROM ocean_dynamics
                    GROUP BY depth
                    ORDER BY depth
                """
            dynamics_result = spark.sql(current_query)
            dynamics_pandas = dynamics_result.toPandas()
            if analysis_type == 'current_patterns':
                intensity_distribution = dynamics_pandas['current_intensity'].value_counts().to_dict()
                directional_analysis = dynamics_pandas.groupby('current_direction')['current_speed'].mean().to_dict()
                depth_current_correlation = np.corrcoef(dynamics_pandas['depth'], dynamics_pandas['current_speed'])[0,1]
                temperature_current_correlation = np.corrcoef(dynamics_pandas['temperature'], dynamics_pandas['current_speed'])[0,1]
                visualization_data = {
                    'current_vectors': dynamics_pandas[['latitude', 'longitude', 'current_speed', 'current_direction']].to_dict('records'),
                    'intensity_distribution': intensity_distribution,
                    'directional_patterns': directional_analysis,
                    'depth_correlation': float(depth_current_correlation),
                    'temperature_correlation': float(temperature_current_correlation)
                }
            else:
                thermal_layers = dynamics_pandas[dynamics_pandas['temp_variance'] > dynamics_pandas['temp_variance'].quantile(0.7)]
                temperature_gradient = []
                for i in range(1, len(dynamics_pandas)):
                    gradient = (dynamics_pandas.iloc[i]['avg_temp'] - dynamics_pandas.iloc[i-1]['avg_temp']) / (dynamics_pandas.iloc[i]['depth'] - dynamics_pandas.iloc[i-1]['depth'])
                    temperature_gradient.append(gradient)
                visualization_data = {
                    'temperature_profile': dynamics_pandas.to_dict('records'),
                    'thermal_layers': thermal_layers.to_dict('records'),
                    'temperature_gradients': temperature_gradient,
                    'thermocline_depth': float(dynamics_pandas.loc[dynamics_pandas['temp_variance'].idxmax(), 'depth'])
                }
            return JsonResponse({'status': 'success', 'data': visualization_data, 'analysis_type': analysis_type})
        else:
            return JsonResponse({'status': 'error', 'message': 'No ocean dynamics data found for the specified depth range'})


六.系统文档展示

在这里插入图片描述

结束

💕💕文末获取源码联系 计算机程序员小杨