基于大数据的客户购物订单数据分析系统 | 还在为Hadoop+Spark项目发愁?客户购物订单数据分析系统拯救你的毕设

70 阅读5分钟

💖💖作者:计算机毕业设计杰瑞 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学校实战项目 计算机毕业设计选题推荐

基于大数据的客户购物订单数据分析系统介绍

客户购物订单数据分析系统是一套基于Hadoop+Spark大数据架构的综合性数据分析平台,专门针对电商购物订单数据进行深度挖掘和智能分析。系统采用Python作为主要开发语言,后端框架使用Django构建RESTful API接口,前端采用Vue+ElementUI+Echarts技术栈实现数据可视化展示。系统核心依托Hadoop分布式文件系统(HDFS)进行海量订单数据存储,利用Spark强大的内存计算能力和Spark SQL进行复杂数据查询与分析处理,结合Pandas和NumPy进行数据清洗和统计运算。功能模块涵盖购物订单数据管理、产品关联规则分析、客户价值分层分析、销售市场分布分析、整体运营绩效分析以及产品销售盈利分析等核心业务场景,为企业提供从数据采集、存储、处理到可视化展示的完整解决方案,帮助商家深入了解客户消费行为特征,优化产品推荐策略,提升运营效率和盈利能力。

基于大数据的客户购物订单数据分析系统演示视频

演示视频

基于大数据的客户购物订单数据分析系统演示图片

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于大数据的客户购物订单数据分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.fpm import FPGrowth
from pyspark.ml.feature import Bucketizer
import pandas as pd
import numpy as np

spark = SparkSession.builder.appName("CustomerOrderAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def analyze_product_association_rules(order_data_path):
    orders_df = spark.read.option("header", "true").csv(order_data_path)
    orders_df = orders_df.select("order_id", "product_id", "product_name", "quantity", "price")
    orders_df = orders_df.filter(col("quantity") > 0)
    basket_df = orders_df.groupBy("order_id").agg(collect_list("product_id").alias("items"))
    basket_df = basket_df.filter(size(col("items")) >= 2)
    fpgrowth = FPGrowth(itemsCol="items", minSupport=0.01, minConfidence=0.1)
    model = fpgrowth.fit(basket_df)
    frequent_itemsets = model.freqItemsets
    frequent_itemsets = frequent_itemsets.filter(size(col("items")) >= 2)
    association_rules = model.associationRules
    association_rules = association_rules.filter(col("confidence") >= 0.3)
    association_rules = association_rules.withColumn("lift", col("confidence") / 
        (frequent_itemsets.filter(array_contains(col("items"), association_rules.select("consequent").collect()[0][0][0])).select("freq").collect()[0][0] / basket_df.count()))
    strong_rules = association_rules.filter(col("lift") > 1.2).orderBy(desc("confidence"), desc("lift"))
    product_support = frequent_itemsets.select(explode(col("items")).alias("product_id"), col("freq")).groupBy("product_id").agg(sum("freq").alias("total_support"))
    result_rules = strong_rules.join(product_support, strong_rules.antecedent[0] == product_support.product_id, "left")
    result_rules = result_rules.select("antecedent", "consequent", "confidence", "lift", "total_support")
    return result_rules.collect()

def analyze_customer_value_segmentation(customer_order_data):
    customer_df = spark.read.option("header", "true").csv(customer_order_data)
    customer_df = customer_df.select("customer_id", "order_date", "total_amount", "order_id")
    customer_df = customer_df.withColumn("order_date", to_date(col("order_date"), "yyyy-MM-dd"))
    max_date = customer_df.select(max("order_date")).collect()[0][0]
    customer_metrics = customer_df.groupBy("customer_id").agg(
        datediff(lit(max_date), max("order_date")).alias("recency"),
        count("order_id").alias("frequency"),
        sum("total_amount").alias("monetary")
    )
    recency_splits = [-float('inf'), 30, 90, 365, float('inf')]
    frequency_splits = [-float('inf'), 2, 5, 10, float('inf')]
    monetary_splits = [-float('inf'), 500, 1500, 5000, float('inf')]
    recency_bucketizer = Bucketizer(splits=recency_splits, inputCol="recency", outputCol="recency_score")
    frequency_bucketizer = Bucketizer(splits=frequency_splits, inputCol="frequency", outputCol="frequency_score") 
    monetary_bucketizer = Bucketizer(splits=monetary_splits, inputCol="monetary", outputCol="monetary_score")
    customer_scored = recency_bucketizer.transform(customer_metrics)
    customer_scored = frequency_bucketizer.transform(customer_scored)
    customer_scored = monetary_bucketizer.transform(customer_scored)
    customer_scored = customer_scored.withColumn("rfm_score", 
        (4 - col("recency_score")) + col("frequency_score") + col("monetary_score"))
    customer_segments = customer_scored.withColumn("customer_segment",
        when(col("rfm_score") >= 8, "高价值客户")
        .when(col("rfm_score") >= 6, "中价值客户") 
        .when(col("rfm_score") >= 4, "潜力客户")
        .otherwise("流失风险客户"))
    segment_summary = customer_segments.groupBy("customer_segment").agg(
        count("customer_id").alias("customer_count"),
        avg("monetary").alias("avg_monetary"),
        avg("frequency").alias("avg_frequency"),
        avg("recency").alias("avg_recency")
    )
    return segment_summary.collect()

def analyze_sales_market_distribution(sales_data_path):
    sales_df = spark.read.option("header", "true").csv(sales_data_path)
    sales_df = sales_df.select("region", "city", "product_category", "sales_amount", "order_count", "order_date")
    sales_df = sales_df.withColumn("order_date", to_date(col("order_date"), "yyyy-MM-dd"))
    sales_df = sales_df.withColumn("year_month", date_format(col("order_date"), "yyyy-MM"))
    regional_analysis = sales_df.groupBy("region").agg(
        sum("sales_amount").alias("total_sales"),
        sum("order_count").alias("total_orders"),
        countDistinct("city").alias("city_count"),
        avg("sales_amount").alias("avg_order_value")
    )
    city_ranking = sales_df.groupBy("region", "city").agg(
        sum("sales_amount").alias("city_sales"),
        sum("order_count").alias("city_orders")
    ).withColumn("sales_rank", row_number().over(
        Window.partitionBy("region").orderBy(desc("city_sales"))))
    top_cities = city_ranking.filter(col("sales_rank") <= 5)
    category_regional_performance = sales_df.groupBy("region", "product_category").agg(
        sum("sales_amount").alias("category_sales"),
        sum("order_count").alias("category_orders")
    ).withColumn("category_rank", row_number().over(
        Window.partitionBy("region").orderBy(desc("category_sales"))))
    monthly_trend = sales_df.groupBy("region", "year_month").agg(
        sum("sales_amount").alias("monthly_sales"),
        sum("order_count").alias("monthly_orders")
    ).withColumn("growth_rate", 
        (col("monthly_sales") - lag("monthly_sales").over(
            Window.partitionBy("region").orderBy("year_month"))) / 
        lag("monthly_sales").over(Window.partitionBy("region").orderBy("year_month")) * 100)
    market_concentration = sales_df.groupBy("region").agg(
        sum("sales_amount").alias("region_total")
    ).withColumn("market_share", col("region_total") / sum("region_total").over(Window.partitionBy()))
    distribution_result = {
        "regional_summary": regional_analysis.collect(),
        "top_cities": top_cities.collect(), 
        "category_performance": category_regional_performance.filter(col("category_rank") <= 3).collect(),
        "monthly_trends": monthly_trend.collect(),
        "market_share": market_concentration.collect()
    }
    return distribution_result

基于大数据的客户购物订单数据分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学校实战项目 计算机毕业设计选题推荐