限时公开!基于Hadoop+Python的大气海洋动力学系统源码

46 阅读9分钟

🎓 作者:计算机毕设小月哥 | 软件开发专家

🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。

🛠️ 专业服务 🛠️

  • 需求定制化开发

  • 源码提供与讲解

  • 技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)

  • 项目答辩演示PPT制作

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅

基于大数据的大气和海洋动力学数据分析与可视化系统-功能介绍

基于大数据的大气和海洋动力学数据分析与可视化系统是一套专门针对气候科学数据处理的综合性分析平台。该系统采用Hadoop+Spark大数据技术架构,结合Python语言的强大数据处理能力,构建了完整的气候数据分析流水线。系统核心聚焦于处理过去140多年的全球气候变化数据,包括海平面变化、大气CO₂浓度、全球温度异常、海面温度、厄尔尼诺现象指标以及南北极海冰范围等关键气候参数。通过Spark SQL和Pandas、NumPy等数据科学库的深度整合,系统实现了海量气候数据的高效存储、快速查询和复杂统计分析。前端采用Vue+ElementUI+Echarts技术栈,为用户提供直观的数据可视化界面,支持多维度的气候趋势展示、关联性分析和时序对比。系统设计了五大核心分析维度:全球气候变化宏观趋势分析、海洋动力学核心指标分析、极地动态演变分析、温室气体构成变化分析以及多指标聚类模式识别,每个维度都包含多个具体的分析功能点,能够为气候科学研究提供数据支撑和可视化展示。

基于大数据的大气和海洋动力学数据分析与可视化系统-选题背景意义

选题背景 随着全球工业化进程的推进和人类活动对地球系统影响的不断加深,气候变化已成为当今世界面临的最严峻挑战之一。大气和海洋作为地球气候系统的两大核心组成部分,其动力学变化直接影响着全球气候模式的演变。传统的气候数据分析方法在面对长时间序列、多维度、海量数据时存在处理效率低下、分析深度不足等问题。近年来,随着气象观测技术的发展,全球气候监测网络积累了大量珍贵的历史数据,这些数据蕴含着丰富的气候变化信息,但如何有效挖掘和展示这些数据中的规律性特征成为了亟待解决的技术难题。大数据技术的兴起为解决这一问题提供了新的思路,Hadoop和Spark等分布式计算框架在处理大规模数据集方面展现出了显著优势,为气候数据的深度分析创造了技术条件。 选题意义 本课题的研究具有重要的实际应用价值和学术探索意义。从技术角度来看,该系统的构建有助于验证大数据技术在气候科学领域的应用可行性,探索Hadoop+Spark架构在长时序气候数据处理中的性能表现,为相关技术在环境科学领域的推广应用提供参考经验。从数据分析角度,系统通过对140多年气候数据的系统性分析,能够揭示全球气候变化的长期趋势和短期波动特征,为理解气候系统的复杂性提供数据支撑。可视化功能的实现使得复杂的气候数据能够以直观的图表形式呈现,降低了专业数据的理解门槛,有利于气候科学知识的传播。系统设计的多维度分析框架为气候数据的深度挖掘提供了新的思路,虽然作为毕业设计项目存在一定局限性,但其基本架构和分析方法具备进一步扩展和完善的潜力,可以为后续更深入的气候科学研究奠定基础。

基于大数据的大气和海洋动力学数据分析与可视化系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

基于大数据的大气和海洋动力学数据分析与可视化系统-视频展示

基于大数据的大气和海洋动力学数据分析与可视化系统-视频展示

基于大数据的大气和海洋动力学数据分析与可视化系统-图片展示

在这里插入图片描述 登录 在这里插入图片描述 大屏上 在这里插入图片描述 大屏下 在这里插入图片描述 大气海洋动力数据 在这里插入图片描述 海洋动力学分析 在这里插入图片描述 宏观趋势分析 在这里插入图片描述 极地动态分析 在这里插入图片描述 温室气体分析

基于大数据的大气和海洋动力学数据分析与可视化系统-代码展示

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, avg, max, min, year, month, lag, when, isnan, count

from pyspark.sql.window import Window

from pyspark.ml.clustering import KMeans

from pyspark.ml.feature import VectorAssembler

import pandas as pd

import numpy as np

spark = SparkSession.builder.appName("ClimateDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def global_climate_trend_analysis(climate_df):

    climate_df.createOrReplaceTempView("climate_data")

    yearly_trends = spark.sql("""

        SELECT 

            YEAR(Date) as year,

            AVG(GMSL) as avg_sea_level,

            AVG(`CO2 conc.`) as avg_co2,

            AVG(`Global avg temp. anomaly relative to 1961-1990`) as avg_temp_anomaly

        FROM climate_data 

        WHERE GMSL IS NOT NULL AND `CO2 conc.` IS NOT NULL 

        GROUP BY YEAR(Date)

        ORDER BY year

    """)

    window_spec = Window.orderBy("year")

    trend_analysis = yearly_trends.withColumn("sea_level_change", 

        col("avg_sea_level") - lag("avg_sea_level").over(window_spec)

    ).withColumn("co2_change",

        col("avg_co2") - lag("avg_co2").over(window_spec)

    ).withColumn("temp_change",

        col("avg_temp_anomaly") - lag("avg_temp_anomaly").over(window_spec)

    )

    decade_analysis = spark.sql("""

        SELECT 

            FLOOR(YEAR(Date)/10)*10 as decade,

            AVG(GMSL) as decade_avg_sea_level,

            (MAX(GMSL) - MIN(GMSL)) as sea_level_range,

            AVG(`Global avg temp. anomaly relative to 1961-1990`) as decade_avg_temp,

            COUNT(*) as record_count

        FROM climate_data 

        WHERE GMSL IS NOT NULL 

        GROUP BY FLOOR(YEAR(Date)/10)*10

        ORDER BY decade

    """)

    correlation_data = yearly_trends.select("avg_sea_level", "avg_co2", "avg_temp_anomaly").toPandas()

    correlation_matrix = correlation_data.corr()

    acceleration_analysis = trend_analysis.withColumn("sea_level_acceleration",

        col("sea_level_change") - lag("sea_level_change").over(window_spec)

    ).filter(col("year") >= 1900)

    return {

        "yearly_trends": yearly_trends.toPandas(),

        "decade_analysis": decade_analysis.toPandas(),

        "correlation_matrix": correlation_matrix,

        "acceleration_data": acceleration_analysis.toPandas()

    }

def ocean_dynamics_enso_analysis(climate_df):

    climate_df.createOrReplaceTempView("ocean_data")

    enso_events = spark.sql("""

        SELECT 

            Date,

            `Nino 3.4`,

            `Sea surface temperature anomaly`,

            `Global avg temp. anomaly relative to 1961-1990`,

            CASE 

                WHEN `Nino 3.4` > 0.5 THEN 'El Nino'

                WHEN `Nino 3.4` < -0.5 THEN 'La Nina'

                ELSE 'Neutral'

            END as enso_phase

        FROM ocean_data 

        WHERE `Nino 3.4` IS NOT NULL AND `Sea surface temperature anomaly` IS NOT NULL

    """)

    regional_nino_comparison = spark.sql("""

        SELECT 

            YEAR(Date) as year,

            AVG(`Nino 1.2`) as nino_12_avg,

            AVG(`Nino 3`) as nino_3_avg,

            AVG(`Nino 3.4`) as nino_34_avg,

            AVG(`Nino 4`) as nino_4_avg,

            STDDEV(`Nino 3.4`) as nino_34_volatility

        FROM ocean_data 

        WHERE `Nino 1.2` IS NOT NULL AND `Nino 3` IS NOT NULL 

        AND `Nino 3.4` IS NOT NULL AND `Nino 4` IS NOT NULL

        GROUP BY YEAR(Date)

        ORDER BY year

    """)

    sst_gmsl_correlation = spark.sql("""

        SELECT 

            YEAR(Date) as year,

            AVG(`Sea surface temperature anomaly`) as avg_sst_anomaly,

            AVG(GMSL) as avg_sea_level,

            CORR(`Sea surface temperature anomaly`, GMSL) OVER() as thermal_expansion_corr

        FROM ocean_data 

        WHERE `Sea surface temperature anomaly` IS NOT NULL AND GMSL IS NOT NULL

        GROUP BY YEAR(Date)

        ORDER BY year

    """)

    enso_intensity_analysis = enso_events.groupBy("enso_phase").agg(

        avg("`Nino 3.4`").alias("avg_intensity"),

        count("*").alias("event_frequency"),

        avg("`Global avg temp. anomaly relative to 1961-1990`").alias("avg_global_temp_impact")

    )

    enso_temp_lag_analysis = spark.sql("""

        SELECT 

            Date,

            `Nino 3.4`,

            `Global avg temp. anomaly relative to 1961-1990`,

            LAG(`Nino 3.4`, 3) OVER (ORDER BY Date) as nino_lag_3months,

            LAG(`Nino 3.4`, 6) OVER (ORDER BY Date) as nino_lag_6months

        FROM ocean_data 

        WHERE `Nino 3.4` IS NOT NULL 

        ORDER BY Date

    """)

    return {

        "enso_events": enso_events.toPandas(),

        "regional_comparison": regional_nino_comparison.toPandas(),

        "sst_correlation": sst_gmsl_correlation.toPandas(),

        "intensity_analysis": enso_intensity_analysis.toPandas(),

        "lag_analysis": enso_temp_lag_analysis.toPandas()

    }

def polar_sea_ice_dynamics_analysis(climate_df):

    climate_df.createOrReplaceTempView("polar_data")

    annual_ice_trends = spark.sql("""

        SELECT 

            YEAR(Date) as year,

            AVG(`North Sea Ice Extent Avg`) as north_ice_avg,

            AVG(`South Sea Ice Extent Avg`) as south_ice_avg,

            MIN(`North Sea Ice Extent Min`) as north_ice_min,

            MAX(`North Sea Ice Extent Max`) as north_ice_max,

            MIN(`South Sea Ice Extent Min`) as south_ice_min,

            MAX(`South Sea Ice Extent Max`) as south_ice_max

        FROM polar_data 

        WHERE `North Sea Ice Extent Avg` IS NOT NULL AND `South Sea Ice Extent Avg` IS NOT NULL

        GROUP BY YEAR(Date)

        ORDER BY year

    """)

    seasonal_ice_patterns = spark.sql("""

        SELECT 

            MONTH(Date) as month,

            AVG(`North Sea Ice Extent Avg`) as north_seasonal_avg,

            AVG(`South Sea Ice Extent Avg`) as south_seasonal_avg,

            STDDEV(`North Sea Ice Extent Avg`) as north_seasonal_std,

            STDDEV(`South Sea Ice Extent Avg`) as south_seasonal_std

        FROM polar_data 

        WHERE `North Sea Ice Extent Avg` IS NOT NULL AND `South Sea Ice Extent Avg` IS NOT NULL

        GROUP BY MONTH(Date)

        ORDER BY month

    """)

    ice_albedo_correlation = spark.sql("""

        SELECT 

            YEAR(Date) as year,

            AVG(`North Sea Ice Extent Avg`) as avg_north_ice,

            AVG(`Global avg temp. anomaly relative to 1961-1990`) as avg_global_temp,

            CORR(`North Sea Ice Extent Avg`, `Global avg temp. anomaly relative to 1961-1990`) OVER() as ice_temp_correlation

        FROM polar_data 

        WHERE `North Sea Ice Extent Avg` IS NOT NULL AND `Global avg temp. anomaly relative to 1961-1990` IS NOT NULL

        GROUP BY YEAR(Date)

        ORDER BY year

    """)

    window_spec = Window.orderBy("year")

    ice_recovery_analysis = annual_ice_trends.withColumn("north_recovery_capacity",

        (col("north_ice_max") - col("north_ice_min")) / col("north_ice_min")

    ).withColumn("south_recovery_capacity",

        (col("south_ice_max") - col("south_ice_min")) / col("south_ice_min")

    ).withColumn("north_trend_change",

        col("north_ice_avg") - lag("north_ice_avg").over(window_spec)

    )

    extreme_ice_events = spark.sql("""

        SELECT 

            year,

            north_ice_min,

            south_ice_min,

            CASE 

                WHEN north_ice_min < PERCENTILE_CONT(0.1) WITHIN GROUP (ORDER BY north_ice_min) OVER() THEN 'Extreme Low'

                WHEN north_ice_min > PERCENTILE_CONT(0.9) WITHIN GROUP (ORDER BY north_ice_min) OVER() THEN 'Extreme High'

                ELSE 'Normal'

            END as north_ice_category

        FROM (

            SELECT 

                YEAR(Date) as year,

                MIN(`North Sea Ice Extent Min`) as north_ice_min,

                MIN(`South Sea Ice Extent Min`) as south_ice_min

            FROM polar_data 

            WHERE `North Sea Ice Extent Min` IS NOT NULL

            GROUP BY YEAR(Date)

        )

    """)

    return {

        "annual_trends": annual_ice_trends.toPandas(),

        "seasonal_patterns": seasonal_ice_patterns.toPandas(),

        "albedo_correlation": ice_albedo_correlation.toPandas(),

        "recovery_analysis": ice_recovery_analysis.toPandas(),

        "extreme_events": extreme_ice_events.toPandas()

    }

基于大数据的大气和海洋动力学数据分析与可视化系统-结语

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅