完整源码免费分享!基于大数据的国家药品采购数据可视化分析系统毕设全套资料

38 阅读6分钟

🍊作者:计算机毕设匠心工作室

🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。

擅长:按照需求定制化开发项目、 源码、对代码进行完整讲解、文档撰写、ppt制作。

🍊心愿:点赞 👍 收藏 ⭐评论 📝

👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~

Java实战项目

Python实战项目

微信小程序|安卓实战项目

大数据实战项目

PHP|C#.NET|Golang实战项目

🍅 ↓↓文末获取源码联系↓↓🍅

国家药品采购数据可视化分析系统-选题背景

选题背景 自2018年11月国家医保局启动"4+7"集采试点以来,我国已开展了十批国家药品集中采购,成功招采了435种药品1600多个中选厂家品规,药品集采已经成为推动医药服务供给侧改革的核心举措。五年间,国家共进行了九批国家药品集采、三批国家高值医用耗材集采,连同地方联盟采购,已累计为患者减负5000亿元,这一庞大的数据规模充分说明了药品集采政策的深远影响。随着集采政策的常态化实施,第九批集采涉及41种药品,205家企业的266个产品获得拟中选资格,预计每年可节约药费182亿元,第十批集采更是创下新高,62种药品采购成功,234家企业的385个产品获得拟中选资格,数据量呈现出快速增长的态势。然而,面对如此海量的药品采购数据,传统的数据分析方法已经难以胜任复杂的多维度分析需求,迫切需要运用大数据技术对这些数据进行深度挖掘和智能分析,以更好地服务于药品采购决策和政策制定。 选题意义 本课题的研究意义体现在多个层面,具有重要的现实价值和应用前景。从政策制定角度来看,系统能够为相关部门提供科学的数据支撑,通过对药品价格分布、供应商竞争格局、市场集中度等关键指标的深入分析,帮助决策者更好地评估集采政策效果,优化采购策略,确保药品供应安全和价格合理。从医疗机构管理视角出发,系统通过可视化分析能够帮助医院等采购方快速识别性价比最优的药品组合,合理配置医疗资源,降低采购成本,提高医疗服务效率。对于制药企业而言,系统提供的市场竞争分析和价格对比功能,能够帮助企业准确把握市场动态,制定更具竞争力的投标策略,提升市场参与度和中标概率。从技术创新角度分析,本系统将Hadoop、Spark等前沿大数据技术与药品采购业务深度融合,不仅验证了大数据技术在医药健康领域的应用可行性,也为相关领域的数据分析系统建设提供了可借鉴的技术方案和实践经验,推动了医疗信息化建设的发展进程。

国家药品采购数据可视化分析系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

国家药品采购数据可视化分析系统-视频展示

系统-视频展示

国家药品采购数据可视化分析系统-图片展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

国家药品采购数据可视化分析系统-代码展示

def drug_price_distribution_analysis(data):
    """药品单位价格整体分布分析"""
    price_stats = {}
    prices = [float(row['unit_price']) for row in data if row['unit_price']]
    price_array = np.array(prices)
    price_stats['mean'] = np.mean(price_array)
    price_stats['median'] = np.median(price_array)
    price_stats['std'] = np.std(price_array)
    price_stats['min'] = np.min(price_array)
    price_stats['max'] = np.max(price_array)
    price_stats['q25'] = np.percentile(price_array, 25)
    price_stats['q75'] = np.percentile(price_array, 75)
    bins = [0, 10, 50, 200, 1000, float('inf')]
    bin_labels = ['0-10元', '10-50元', '50-200元', '200-1000元', '1000元以上']
    price_distribution = []
    for i in range(len(bins)-1):
        count = np.sum((price_array >= bins[i]) & (price_array < bins[i+1]))
        percentage = (count / len(price_array)) * 100
        price_distribution.append({
            'range': bin_labels[i],
            'count': int(count),
            'percentage': round(percentage, 2)
        })
    histogram_data = np.histogram(price_array, bins=30)
    histogram_result = []
    for i in range(len(histogram_data[0])):
        histogram_result.append({
            'range_start': round(histogram_data[1][i], 2),
            'range_end': round(histogram_data[1][i+1], 2),
            'frequency': int(histogram_data[0][i])
        })
    result = {
        'statistics': price_stats,
        'distribution': price_distribution,
        'histogram': histogram_result
    }
    return result

def manufacturer_market_analysis(data):
    """生产企业市场份额与竞争分析"""
    manufacturer_count = {}
    for row in data:
        manufacturer = row['manufacturer'].strip()
        if manufacturer in manufacturer_count:
            manufacturer_count[manufacturer] += 1
        else:
            manufacturer_count[manufacturer] = 1
    sorted_manufacturers = sorted(manufacturer_count.items(), key=lambda x: x[1], reverse=True)
    total_drugs = len(data)
    top_10_manufacturers = sorted_manufacturers[:10]
    top_10_count = sum([count for _, count in top_10_manufacturers])
    others_count = total_drugs - top_10_count
    market_share_data = []
    for manufacturer, count in top_10_manufacturers:
        percentage = (count / total_drugs) * 100
        market_share_data.append({
            'manufacturer': manufacturer,
            'drug_count': count,
            'market_share': round(percentage, 2)
        })
    if others_count > 0:
        others_percentage = (others_count / total_drugs) * 100
        market_share_data.append({
            'manufacturer': '其他企业',
            'drug_count': others_count,
            'market_share': round(others_percentage, 2)
        })
    hhi_index = sum([(count/total_drugs)**2 for _, count in manufacturer_count.items()])
    concentration_analysis = {
        'top_5_concentration': sum([count for _, count in sorted_manufacturers[:5]]) / total_drugs * 100,
        'top_10_concentration': sum([count for _, count in sorted_manufacturers[:10]]) / total_drugs * 100,
        'hhi_index': round(hhi_index, 4),
        'market_type': '高度集中' if hhi_index > 0.25 else '中度集中' if hhi_index > 0.15 else '竞争充分'
    }
    dosage_form_analysis = {}
    for manufacturer, _ in top_10_manufacturers:
        dosage_forms = {}
        for row in data:
            if row['manufacturer'].strip() == manufacturer:
                dosage_form = row['standard_dosage_form']
                dosage_forms[dosage_form] = dosage_forms.get(dosage_form, 0) + 1
        dosage_form_analysis[manufacturer] = dosage_forms
    result = {
        'market_share': market_share_data,
        'concentration_analysis': concentration_analysis,
        'dosage_form_distribution': dosage_form_analysis,
        'total_manufacturers': len(manufacturer_count)
    }
    return result

def drug_competition_cost_analysis(data, target_generic_name):
    """同类药品竞争与成本效益分析"""
    same_drug_data = [row for row in data if row['generic_name'] == target_generic_name]
    if not same_drug_data:
        return {'error': f'未找到通用名为{target_generic_name}的药品数据'}
    price_comparison = []
    unit_prices = []
    for row in same_drug_data:
        unit_price = float(row['unit_price'])
        price_comparison.append({
            'manufacturer': row['manufacturer'],
            'unit_price': unit_price,
            'total_price': float(row['price']),
            'package_quantity': row['package_quantity'],
            'dosage_form': row['standard_dosage_form']
        })
        unit_prices.append(unit_price)
    price_array = np.array(unit_prices)
    price_stats = {
        'avg_price': round(np.mean(price_array), 2),
        'price_variance': round(np.var(price_array), 2),
        'price_cv': round(np.std(price_array) / np.mean(price_array), 3),
        'min_price': round(np.min(price_array), 2),
        'max_price': round(np.max(price_array), 2),
        'price_range': round(np.max(price_array) - np.min(price_array), 2)
    }
    competition_intensity = {
        'manufacturer_count': len(same_drug_data),
        'competition_level': '激烈竞争' if len(same_drug_data) >= 5 else '中等竞争' if len(same_drug_data) >= 3 else '有限竞争',
        'price_dispersion': '高' if price_stats['price_cv'] > 0.5 else '中' if price_stats['price_cv'] > 0.2 else '低'
    }
    cost_effectiveness = []
    for row in same_drug_data:
        if 'standard_dose_mg' in row and row['standard_dose_mg']:
            dose_mg = float(row['standard_dose_mg'])
            unit_price = float(row['unit_price'])
            cost_per_mg = unit_price / dose_mg if dose_mg > 0 else 0
            cost_effectiveness.append({
                'manufacturer': row['manufacturer'],
                'cost_per_mg': round(cost_per_mg, 4),
                'dose_mg': dose_mg,
                'cost_efficiency_rank': 0
            })
    if cost_effectiveness:
        cost_effectiveness.sort(key=lambda x: x['cost_per_mg'])
        for i, item in enumerate(cost_effectiveness):
            item['cost_efficiency_rank'] = i + 1
    result = {
        'generic_name': target_generic_name,
        'price_comparison': sorted(price_comparison, key=lambda x: x['unit_price']),
        'price_statistics': price_stats,
        'competition_analysis': competition_intensity,
        'cost_effectiveness': cost_effectiveness
    }
    return result

国家药品采购数据可视化分析系统-结语

👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~

Java实战项目

Python实战项目

微信小程序|安卓实战项目

大数据实战项目

PHP|C#.NET|Golang实战项目

🍅 主页获取源码联系🍅