一、个人简介
- 💖💖作者:计算机编程果茶熊
- 💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
- 💛💛想说的话:感谢大家的关注与支持!
- 💜💜
- 网站实战项目
- 安卓/小程序实战项目
- 大数据实战项目
- 计算机毕业设计选题
- 💕💕文末获取源码联系计算机编程果茶熊
二、系统介绍
- 大数据框架:Hadoop+Spark(Hive需要定制修改)
- 开发语言:Java+Python(两个版本都支持)
- 数据库:MySQL
- 后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
- 前端:Vue+Echarts+HTML+CSS+JavaScript+jQuery
三、基于大数据的汽车之家数据分析系统-视频解说
对车感兴趣,毕设却没思路?来看看这套基于大数据的汽车之家数据分析系统是否合你心意!
四、基于大数据的汽车之家数据分析系统-功能展示
五、基于大数据的汽车之家数据分析系统-代码展示
# 核心功能1:整体市场行情分析
def analyze_market_trend(self, time_period):
# 使用Spark SQL查询指定时期的汽车销售数据
market_data = spark.sql("""
SELECT brand, model, price, sales_volume, publish_date, region
FROM car_sales_data
WHERE publish_date >= '{}' AND publish_date <= '{}'
""".format(time_period['start'], time_period['end']))
# 转换为Pandas DataFrame进行数据处理
df = market_data.toPandas()
# 计算各品牌市场份额
brand_share = df.groupby('brand')['sales_volume'].sum().reset_index()
brand_share['market_share'] = (brand_share['sales_volume'] / brand_share['sales_volume'].sum() * 100).round(2)
# 分析价格趋势
df['price_range'] = pd.cut(df['price'], bins=[0, 100000, 200000, 300000, float('inf')],
labels=['10万以下', '10-20万', '20-30万', '30万以上'])
price_trend = df.groupby(['price_range', 'brand'])['sales_volume'].sum().reset_index()
# 计算月度销量增长率
df['month'] = pd.to_datetime(df['publish_date']).dt.to_period('M')
monthly_sales = df.groupby('month')['sales_volume'].sum().reset_index()
monthly_sales['growth_rate'] = monthly_sales['sales_volume'].pct_change() * 100
# 使用NumPy计算统计指标
avg_price = np.mean(df['price'])
price_volatility = np.std(df['price'])
correlation_matrix = np.corrcoef([df['price'], df['sales_volume']])
return {
'brand_share': brand_share.to_dict('records'),
'price_trend': price_trend.to_dict('records'),
'monthly_growth': monthly_sales.to_dict('records'),
'market_stats': {
'avg_price': avg_price,
'price_volatility': price_volatility,
'price_sales_correlation': correlation_matrix[0][1]
}
}
# 核心功能2:新能源车市场分析
def analyze_new_energy_market(self, analysis_params):
# 从HDFS读取新能源车数据并使用Spark处理
new_energy_rdd = spark.sparkContext.textFile("hdfs://car_data/new_energy_vehicles.json")
new_energy_df = spark.read.json(new_energy_rdd)
# 筛选新能源车数据(纯电动、插电混动、氢燃料)
filtered_data = new_energy_df.filter(
(new_energy_df.energy_type.isin(['BEV', 'PHEV', 'FCEV']))
).cache()
# 转换为Pandas进行复杂分析
ne_df = filtered_data.toPandas()
# 分析不同新能源类型的市场表现
energy_type_analysis = ne_df.groupby('energy_type').agg({
'sales_volume': ['sum', 'mean'],
'price': ['mean', 'min', 'max'],
'battery_capacity': 'mean',
'driving_range': 'mean'
}).round(2)
# 计算新能源车渗透率趋势
ne_df['date'] = pd.to_datetime(ne_df['sales_date'])
ne_df['quarter'] = ne_df['date'].dt.to_period('Q')
quarterly_penetration = ne_df.groupby(['quarter', 'region']).agg({
'sales_volume': 'sum',
'total_market_volume': 'first'
}).reset_index()
quarterly_penetration['penetration_rate'] = (
quarterly_penetration['sales_volume'] / quarterly_penetration['total_market_volume'] * 100
)
# 使用NumPy分析技术参数相关性
battery_range_corr = np.corrcoef(ne_df['battery_capacity'], ne_df['driving_range'])[0][1]
price_range_corr = np.corrcoef(ne_df['price'], ne_df['driving_range'])[0][1]
# 预测新能源车市场增长趋势
monthly_growth = ne_df.groupby('quarter')['sales_volume'].sum()
growth_coeffs = np.polyfit(range(len(monthly_growth)), monthly_growth.values, 2)
future_quarters = 4
future_trend = [np.polyval(growth_coeffs, len(monthly_growth) + i) for i in range(future_quarters)]
return {
'energy_type_stats': energy_type_analysis.to_dict(),
'penetration_trend': quarterly_penetration.to_dict('records'),
'technical_correlations': {
'battery_range_correlation': battery_range_corr,
'price_range_correlation': price_range_corr
},
'market_forecast': future_trend
}
# 核心功能3:车辆保值率分析
def analyze_vehicle_retention_rate(self, vehicle_params):
# 使用Spark SQL连接多个数据源分析保值率
retention_query = """
SELECT v.brand, v.model, v.original_price, v.manufacture_year,
s.current_price, s.mileage, s.condition_score, s.sale_date,
DATEDIFF(s.sale_date, v.manufacture_date) as age_days
FROM vehicle_info v
JOIN second_hand_sales s ON v.model_id = s.model_id
WHERE v.manufacture_year >= {} AND v.manufacture_year <= {}
""".format(vehicle_params['year_start'], vehicle_params['year_end'])
retention_df = spark.sql(retention_query).toPandas()
# 计算保值率核心指标
retention_df['vehicle_age_years'] = retention_df['age_days'] / 365
retention_df['retention_rate'] = (retention_df['current_price'] / retention_df['original_price'] * 100).round(2)
retention_df['annual_depreciation'] = ((retention_df['original_price'] - retention_df['current_price']) /
retention_df['vehicle_age_years'] / retention_df['original_price'] * 100).round(2)
# 按品牌分析平均保值率
brand_retention = retention_df.groupby('brand').agg({
'retention_rate': ['mean', 'median', 'std'],
'annual_depreciation': 'mean'
}).round(2)
# 分析影响保值率的关键因素
mileage_impact = retention_df.groupby(pd.cut(retention_df['mileage'],
bins=[0, 50000, 100000, 150000, float('inf')],
labels=['5万以下', '5-10万', '10-15万', '15万以上']))['retention_rate'].mean()
condition_impact = retention_df.groupby('condition_score')['retention_rate'].mean()
# 使用NumPy进行多元回归分析
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
features = retention_df[['vehicle_age_years', 'mileage', 'condition_score', 'original_price']]
target = retention_df['retention_rate']
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
model = LinearRegression()
model.fit(features_scaled, target)
feature_importance = dict(zip(features.columns, model.coef_))
# 预测不同车龄的保值率曲线
age_range = np.arange(0.5, 10, 0.5)
avg_mileage = retention_df['mileage'].mean()
avg_condition = retention_df['condition_score'].mean()
avg_price = retention_df['original_price'].mean()
predicted_retention = []
for age in age_range:
prediction_data = scaler.transform([[age, avg_mileage, avg_condition, avg_price]])
predicted_rate = model.predict(prediction_data)[0]
predicted_retention.append({'age': age, 'predicted_retention': max(0, predicted_rate)})
return {
'brand_retention_stats': brand_retention.to_dict(),
'mileage_impact': mileage_impact.to_dict(),
'condition_impact': condition_impact.to_dict(),
'factor_importance': feature_importance,
'retention_curve': predicted_retention,
'model_r2_score': model.score(features_scaled, target)
}
六、基于大数据的汽车之家数据分析系统-文档展示
七、END
- 💛💛想说的话:感谢大家的关注与支持!
- 💜💜
- 网站实战项目
- 安卓/小程序实战项目
- 大数据实战项目
- 计算机毕业设计选题
- 💕💕文末获取源码联系计算机编程果茶熊