🍊作者:计算机毕设匠心工作室
🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。
擅长:按照需求定制化开发项目、 源码、对代码进行完整讲解、文档撰写、ppt制作。
🍊心愿:点赞 👍 收藏 ⭐评论 📝
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
🍅 ↓↓文末获取源码联系↓↓🍅
小儿阑尾炎数据可视化分析系统-选题背景
选题背景 小儿阑尾炎作为儿科最常见的急腹症,在全球儿童人群中发病率约为1-8‰,其中5-15岁儿童为高发年龄段,占所有阑尾炎病例的70%以上。据世界卫生组织统计数据显示,小儿阑尾炎的误诊率高达15-30%,特别是在5岁以下儿童中,由于症状不典型、表达能力有限等因素,误诊率甚至可达40-50%,这直接导致了穿孔率显著增高。国内儿童医院的临床数据表明,小儿阑尾炎穿孔率普遍在20-35%之间,远高于成人的5-10%,而一旦发生穿孔,患儿的住院时间将延长2-3倍,医疗费用增加3-5倍,同时并发症发生率也会成倍增长。传统的诊断方式主要依赖医生的临床经验和少量检查指标的主观判断,缺乏系统性的数据分析支撑,这种诊断模式在面对大量相似病例时往往显得力不从心。随着医疗信息化程度不断提升,各大医院积累了海量的患者临床数据,这些宝贵的数据资源蕴含着丰富的诊断规律和治疗经验,亟需通过现代化的大数据技术手段进行深度挖掘和分析,为提升小儿阑尾炎的诊疗水平提供科学依据。 选题意义 构建基于大数据的小儿阑尾炎数据可视化分析系统具有重要的实际价值和深远意义。从医疗实践角度来看,该系统能够通过对大量真实病例数据的统计分析,帮助临床医生识别出影响小儿阑尾炎诊断准确性的关键因素,比如哪些实验室指标组合具有更高的诊断价值,哪些临床症状在不同年龄段儿童中的表现差异,这些发现将直接提升一线医生的诊断能力,减少误诊和漏诊情况的发生。从医疗质量管理层面来说,系统提供的数据分析结果可以为制定更加科学合理的诊疗规范和临床路径提供参考,通过量化分析治疗方案选择的影响因素,帮助医疗机构优化资源配置,提高医疗服务效率。对于医学教育而言,系统中的可视化分析功能能够将抽象的统计数据转化为直观的图表展示,为医学院校的教学提供生动的案例材料,帮助学生更好地理解疾病的发展规律和诊疗要点。从技术创新角度分析,项目将医疗大数据分析与现代信息技术深度融合,探索了Hadoop、Spark等大数据处理技术在医疗领域的具体应用场景,为医疗信息化建设提供了技术参考和实践经验,同时也推动了跨学科研究的发展,展现了计算机技术服务医疗健康事业的巨大潜力。
小儿阑尾炎数据可视化分析系统-技术选型
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
小儿阑尾炎数据可视化分析系统-视频展示
小儿阑尾炎数据可视化分析系统-图片展示
小儿阑尾炎数据可视化分析系统-代码展示
def analyze_patient_demographics_distribution(request):
if request.method == 'GET':
spark = SparkSession.builder.appName("PatientDemographics").getOrCreate()
df = spark.read.option("header", "true").csv("hdfs://localhost:9000/medical_data/app_data.csv")
df.createOrReplaceTempView("patients")
age_distribution = spark.sql("""
SELECT
CASE
WHEN Age <= 3 THEN '婴幼儿(0-3岁)'
WHEN Age <= 6 THEN '学龄前(4-6岁)'
WHEN Age <= 12 THEN '学龄期(7-12岁)'
ELSE '青少年(13-18岁)'
END as age_group,
COUNT(*) as count,
ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as percentage
FROM patients
GROUP BY
CASE
WHEN Age <= 3 THEN '婴幼儿(0-3岁)'
WHEN Age <= 6 THEN '学龄前(4-6岁)'
WHEN Age <= 12 THEN '学龄期(7-12岁)'
ELSE '青少年(13-18岁)'
END
ORDER BY count DESC
""").collect()
gender_distribution = spark.sql("""
SELECT
CASE WHEN Sex = 'M' THEN '男' ELSE '女' END as gender,
COUNT(*) as count,
ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as percentage
FROM patients
GROUP BY Sex
""").collect()
bmi_stats = spark.sql("""
SELECT
ROUND(AVG(BMI), 2) as avg_bmi,
ROUND(MIN(BMI), 2) as min_bmi,
ROUND(MAX(BMI), 2) as max_bmi,
ROUND(PERCENTILE_APPROX(BMI, 0.25), 2) as q1_bmi,
ROUND(PERCENTILE_APPROX(BMI, 0.75), 2) as q3_bmi
FROM patients
""").collect()
alvarado_distribution = spark.sql("""
SELECT
CASE
WHEN Alvarado_Score <= 3 THEN '低风险(≤3分)'
WHEN Alvarado_Score <= 6 THEN '中风险(4-6分)'
ELSE '高风险(≥7分)'
END as risk_level,
COUNT(*) as count,
ROUND(AVG(Alvarado_Score), 2) as avg_score
FROM patients
GROUP BY
CASE
WHEN Alvarado_Score <= 3 THEN '低风险(≤3分)'
WHEN Alvarado_Score <= 6 THEN '中风险(4-6分)'
ELSE '高风险(≥7分)'
END
""").collect()
diagnosis_outcome = spark.sql("""
SELECT
Diagnosis,
Management,
Severity,
COUNT(*) as case_count,
ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as percentage
FROM patients
GROUP BY Diagnosis, Management, Severity
ORDER BY case_count DESC
""").collect()
spark.stop()
result_data = {
'age_distribution': [row.asDict() for row in age_distribution],
'gender_distribution': [row.asDict() for row in gender_distribution],
'bmi_statistics': bmi_stats[0].asDict(),
'alvarado_distribution': [row.asDict() for row in alvarado_distribution],
'clinical_outcomes': [row.asDict() for row in diagnosis_outcome]
}
return JsonResponse({'status': 'success', 'data': result_data})
def analyze_diagnosis_influencing_factors(request):
if request.method == 'GET':
spark = SparkSession.builder.appName("DiagnosisFactors").getOrCreate()
df = spark.read.option("header", "true").csv("hdfs://localhost:9000/medical_data/app_data.csv")
df.createOrReplaceTempView("patients")
lab_indicators_comparison = spark.sql("""
SELECT
Diagnosis,
ROUND(AVG(WBC_Count), 2) as avg_wbc,
ROUND(AVG(CRP), 2) as avg_crp,
ROUND(AVG(Neutrophil_Percentage), 2) as avg_neutrophil,
ROUND(STDDEV(WBC_Count), 2) as std_wbc,
ROUND(STDDEV(CRP), 2) as std_crp,
COUNT(*) as patient_count
FROM patients
WHERE Diagnosis IN ('appendicitis', 'no appendicitis')
GROUP BY Diagnosis
""").collect()
clinical_symptoms_analysis = spark.sql("""
SELECT
Diagnosis,
SUM(CASE WHEN Migratory_Pain = 'Y' THEN 1 ELSE 0 END) as migratory_pain_count,
SUM(CASE WHEN Nausea = 'Y' THEN 1 ELSE 0 END) as nausea_count,
SUM(CASE WHEN Loss_of_Appetite = 'Y' THEN 1 ELSE 0 END) as appetite_loss_count,
COUNT(*) as total_cases,
ROUND(SUM(CASE WHEN Migratory_Pain = 'Y' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as migratory_pain_rate,
ROUND(SUM(CASE WHEN Nausea = 'Y' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as nausea_rate,
ROUND(SUM(CASE WHEN Loss_of_Appetite = 'Y' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as appetite_loss_rate
FROM patients
WHERE Diagnosis IN ('appendicitis', 'no appendicitis')
GROUP BY Diagnosis
""").collect()
temperature_analysis = spark.sql("""
SELECT
Diagnosis,
ROUND(AVG(Body_Temperature), 2) as avg_temperature,
ROUND(MIN(Body_Temperature), 2) as min_temperature,
ROUND(MAX(Body_Temperature), 2) as max_temperature,
SUM(CASE WHEN Body_Temperature >= 38.0 THEN 1 ELSE 0 END) as fever_cases,
ROUND(SUM(CASE WHEN Body_Temperature >= 38.0 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as fever_rate
FROM patients
WHERE Diagnosis IN ('appendicitis', 'no appendicitis')
GROUP BY Diagnosis
""").collect()
scoring_system_validation = spark.sql("""
SELECT
Diagnosis,
ROUND(AVG(Alvarado_Score), 2) as avg_alvarado,
ROUND(AVG(Paedriatic_Appendicitis_Score), 2) as avg_pediatric_score,
ROUND(STDDEV(Alvarado_Score), 2) as std_alvarado,
ROUND(STDDEV(Paedriatic_Appendicitis_Score), 2) as std_pediatric_score,
COUNT(*) as case_count
FROM patients
WHERE Diagnosis IN ('appendicitis', 'no appendicitis')
GROUP BY Diagnosis
""").collect()
age_diagnosis_correlation = spark.sql("""
SELECT
CASE
WHEN Age <= 5 THEN '幼儿组(≤5岁)'
WHEN Age <= 10 THEN '儿童组(6-10岁)'
ELSE '青少年组(>10岁)'
END as age_group,
SUM(CASE WHEN Diagnosis = 'appendicitis' THEN 1 ELSE 0 END) as appendicitis_cases,
COUNT(*) as total_cases,
ROUND(SUM(CASE WHEN Diagnosis = 'appendicitis' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as diagnosis_rate
FROM patients
GROUP BY
CASE
WHEN Age <= 5 THEN '幼儿组(≤5岁)'
WHEN Age <= 10 THEN '儿童组(6-10岁)'
ELSE '青少年组(>10岁)'
END
ORDER BY diagnosis_rate DESC
""").collect()
spark.stop()
analysis_result = {
'laboratory_comparison': [row.asDict() for row in lab_indicators_comparison],
'symptoms_analysis': [row.asDict() for row in clinical_symptoms_analysis],
'temperature_analysis': [row.asDict() for row in temperature_analysis],
'scoring_validation': [row.asDict() for row in scoring_system_validation],
'age_correlation': [row.asDict() for row in age_diagnosis_correlation]
}
return JsonResponse({'status': 'success', 'data': analysis_result})
def analyze_treatment_decision_factors(request):
if request.method == 'GET':
spark = SparkSession.builder.appName("TreatmentDecision").getOrCreate()
df = spark.read.option("header", "true").csv("hdfs://localhost:9000/medical_data/app_data.csv")
df.createOrReplaceTempView("patients")
scoring_treatment_correlation = spark.sql("""
SELECT
Management,
ROUND(AVG(Alvarado_Score), 2) as avg_alvarado,
ROUND(AVG(Paedriatic_Appendicitis_Score), 2) as avg_pediatric_score,
ROUND(MIN(Alvarado_Score), 2) as min_alvarado,
ROUND(MAX(Alvarado_Score), 2) as max_alvarado,
ROUND(MIN(Paedriatic_Appendicitis_Score), 2) as min_pediatric,
ROUND(MAX(Paedriatic_Appendicitis_Score), 2) as max_pediatric,
COUNT(*) as patient_count
FROM patients
WHERE Management IN ('surgical', 'conservative')
GROUP BY Management
""").collect()
lab_treatment_correlation = spark.sql("""
SELECT
Management,
ROUND(AVG(WBC_Count), 2) as avg_wbc,
ROUND(AVG(CRP), 2) as avg_crp,
ROUND(AVG(Neutrophil_Percentage), 2) as avg_neutrophil,
SUM(CASE WHEN WBC_Count > 12000 THEN 1 ELSE 0 END) as high_wbc_cases,
SUM(CASE WHEN CRP > 10 THEN 1 ELSE 0 END) as high_crp_cases,
ROUND(SUM(CASE WHEN WBC_Count > 12000 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as high_wbc_rate,
ROUND(SUM(CASE WHEN CRP > 10 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as high_crp_rate,
COUNT(*) as total_cases
FROM patients
WHERE Management IN ('surgical', 'conservative')
GROUP BY Management
""").collect()
ultrasound_treatment_impact = spark.sql("""
SELECT
Management,
ROUND(AVG(Appendix_Diameter), 2) as avg_diameter,
ROUND(MIN(Appendix_Diameter), 2) as min_diameter,
ROUND(MAX(Appendix_Diameter), 2) as max_diameter,
SUM(CASE WHEN Appendix_Diameter > 7 THEN 1 ELSE 0 END) as enlarged_appendix_cases,
SUM(CASE WHEN Free_Fluids = 'Y' THEN 1 ELSE 0 END) as free_fluid_cases,
ROUND(SUM(CASE WHEN Appendix_Diameter > 7 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as enlarged_rate,
ROUND(SUM(CASE WHEN Free_Fluids = 'Y' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as free_fluid_rate,
COUNT(*) as case_count
FROM patients
WHERE Management IN ('surgical', 'conservative') AND Appendix_Diameter IS NOT NULL
GROUP BY Management
""").collect()
age_treatment_preference = spark.sql("""
SELECT
CASE
WHEN Age <= 3 THEN '婴幼儿(≤3岁)'
WHEN Age <= 8 THEN '学龄前期(4-8岁)'
WHEN Age <= 12 THEN '学龄期(9-12岁)'
ELSE '青少年期(>12岁)'
END as age_category,
SUM(CASE WHEN Management = 'surgical' THEN 1 ELSE 0 END) as surgical_cases,
SUM(CASE WHEN Management = 'conservative' THEN 1 ELSE 0 END) as conservative_cases,
COUNT(*) as total_patients,
ROUND(SUM(CASE WHEN Management = 'surgical' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as surgical_rate,
ROUND(SUM(CASE WHEN Management = 'conservative' THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as conservative_rate
FROM patients
WHERE Management IN ('surgical', 'conservative')
GROUP BY
CASE
WHEN Age <= 3 THEN '婴幼儿(≤3岁)'
WHEN Age <= 8 THEN '学龄前期(4-8岁)'
WHEN Age <= 12 THEN '学龄期(9-12岁)'
ELSE '青少年期(>12岁)'
END
ORDER BY surgical_rate DESC
""").collect()
comprehensive_decision_matrix = spark.sql("""
SELECT
Management,
CASE
WHEN Alvarado_Score >= 7 AND WBC_Count > 12000 AND Appendix_Diameter > 7 THEN '高风险指标组合'
WHEN Alvarado_Score >= 5 AND (WBC_Count > 10000 OR CRP > 5) THEN '中等风险指标组合'
ELSE '低风险指标组合'
END as risk_combination,
COUNT(*) as case_count,
ROUND(AVG(Length_of_Stay), 2) as avg_hospital_stay
FROM patients
WHERE Management IN ('surgical', 'conservative')
AND Alvarado_Score IS NOT NULL
AND WBC_Count IS NOT NULL
AND Appendix_Diameter IS NOT NULL
GROUP BY Management,
CASE
WHEN Alvarado_Score >= 7 AND WBC_Count > 12000 AND Appendix_Diameter > 7 THEN '高风险指标组合'
WHEN Alvarado_Score >= 5 AND (WBC_Count > 10000 OR CRP > 5) THEN '中等风险指标组合'
ELSE '低风险指标组合'
END
ORDER BY case_count DESC
""").collect()
spark.stop()
treatment_analysis_data = {
'scoring_treatment_relation': [row.asDict() for row in scoring_treatment_correlation],
'laboratory_treatment_relation': [row.asDict() for row in lab_treatment_correlation],
'ultrasound_impact': [row.asDict() for row in ultrasound_treatment_impact],
'age_treatment_preference': [row.asDict() for row in age_treatment_preference],
'decision_matrix': [row.asDict() for row in comprehensive_decision_matrix]
}
return JsonResponse({'status': 'success', 'data': treatment_analysis_data})
小儿阑尾炎数据可视化分析系统-结语
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
🍅 主页获取源码联系🍅