【爆刷力扣-栈和队列】栈和队列

62 阅读5分钟

【leetcode 232】用栈实现队列

image.png

思路

下面动画模拟以下队列的执行过程: 执行语句:
queue.push(1);
queue.push(2);
queue.pop(); 注意此时的输出栈的操作
queue.push(3);
queue.push(4);
queue.pop();
queue.pop();注意此时的输出栈的操作
queue.pop();
queue.empty();

d71948c8a1b419831c5c50364541e08d_232.%E7%94%A8%E6%A0%88%E5%AE%9E%E7%8E%B0%E9%98%9F%E5%88%97%E7%89%88%E6%9C%AC2.gif

在push数据的时候,只要数据放进输入栈就好,但在pop的时候,操作就复杂一些,输出栈如果为空,就把进栈数据全部导入进来(注意是全部导入) ,再从出栈弹出数据,如果输出栈不为空,则直接从出栈弹出数据就可以了。

代码

伪代码

stackIn,stackOut;

void Push(int x){
    stackIn.push(x);
}

int pop(){
    if(stackOut.empty){
        while(!stackIn.empty){
            stackOut.push(stackIn.top);
            stackIn.pop
        }
    }
    result=stackOut.top;
    stackOut.pop;
    return result;
}

int peek() {
    int res = this->pop; 
    stOut.push(res); 
    return res;
}

代码

class MyQueue {
public:
    stack<int> stIn;
    stack<int> stOut;
    /** Initialize your data structure here. */
    MyQueue() {

    }
    /** Push element x to the back of queue. */
    void push(int x) {
        stIn.push(x);
    }

    /** Removes the element from in front of queue and returns that element. */
    int pop() {
        // 只有当stOut为空的时候,再从stIn里导入数据(导入stIn全部数据)
        if (stOut.empty()) {
            // 从stIn导入数据直到stIn为空
            while(!stIn.empty()) {
                stOut.push(stIn.top());
                stIn.pop();
            }
        }
        int result = stOut.top();
        stOut.pop();
        return result;
    }

    /** Get the front element. */
    int peek() {
        int res = this->pop(); // 直接使用已有的pop函数
        stOut.push(res); // 因为pop函数弹出了元素res,所以再添加回去
        return res;
    }

    /** Returns whether the queue is empty. */
    bool empty() {
        return stIn.empty() && stOut.empty();
    }
};

【leetcode 225】用队列实现栈

image.png

思路

b38f66716ccbda3c73018a77cdbb81fd_225.%E7%94%A8%E9%98%9F%E5%88%97%E5%AE%9E%E7%8E%B0%E6%A0%88.gif

代码

伪代码

void push(int x){
    queue.push(x)
}

int pop(){
    int size=queue.size-1;//减1的目的是,保留弹出的元素放在对头,它前面的元素全放在队尾
    while(size--){
        queue.push(queue.front);
        queue.pop;
    }
    result=queue.front;
    queue.pop;
    return result;
}

int top(){
    return queue.back;
}

代码

class MyStack {
public:
    queue<int> que;

    MyStack() {

    }

    void push(int x) {
        que.push(x);
    }

    int pop() {
        int size = que.size();
        size--;
        while (size--) { // 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
            que.push(que.front());
            que.pop();
        }
        int result = que.front(); // 此时弹出的元素顺序就是栈的顺序了
        que.pop();
        return result;
    }

    int top(){
        int size = que.size();
        size--;
        while (size--){
            // 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
            que.push(que.front());
            que.pop();
        }
        int result = que.front(); // 此时获得的元素就是栈顶的元素了
        que.push(que.front());    // 将获取完的元素也重新添加到队列尾部,保证数据结构没有变化
        que.pop();
        return result;
    }

    bool empty() {
        return que.empty();
    }
};

【leetcode 20】有效括号

image.png

思路

image.png 第一种情况:已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false

第二种情况:遍历字符串匹配的过程中,发现栈里没有要匹配的字符。所以return false

第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号return false

代码

class Solution {
public:
    bool isValid(string s) {
        if (s.size() % 2 != 0) return false; // 如果s的长度为奇数,一定不符合要求
        stack<char> st;
        for (int i = 0; i < s.size(); i++) {
            if (s[i] == '(') st.push(')');
            else if (s[i] == '{') st.push('}');
            else if (s[i] == '[') st.push(']');
            // 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
            // 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
            else if (st.empty() || st.top() != s[i]) return false; //注意判断的顺序,一定要先判空
            else st.pop(); // st.top() 与 s[i]相等,栈弹出元素,对对碰
        }
        // 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
        return st.empty();
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

【leetcode 1047】删除字符串中的所有相邻重复项

image.png

思路

用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。

然后再去做对应的消除操作。

a074a3c7b2c4ff1a54822e7f64439bad_1047.%E5%88%A0%E9%99%A4%E5%AD%97%E7%AC%A6%E4%B8%B2%E4%B8%AD%E7%9A%84%E6%89%80%E6%9C%89%E7%9B%B8%E9%82%BB%E9%87%8D%E5%A4%8D%E9%A1%B9.gif

从栈中弹出剩余元素,此时是字符串ac,因为从栈里弹出的元素是倒序的,所以再对字符串进行反转一下,就得到了最终的结果。或者 拿字符串直接作为栈,这样省去了栈还要转为字符串的操作。

image.png

代码

伪代码

string result;
for(char s : S){
    if(result.empty || s != result.back){
        result.push_back(s)
    }else{
        result.pop_back
    }
}
return result;

代码

class Solution {
public:
    string removeDuplicates(string S) {
        string result;
        for(char s : S) {
            if(result.empty() || result.back() != s) {
                result.push_back(s);
            }
            else {
                result.pop_back();
            }
        }
        return result;
    }
};

【leetcode 150】逆波兰表达式求值

image.png

思路

image.png 逆波兰表达式相当于是二叉树中的后序遍历

代码

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        // 力扣修改了后台测试数据,需要用longlong
        stack<long long> st; 
        for (int i = 0; i < tokens.size(); i++) {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
                long long num1 = st.top();
                st.pop();
                long long num2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(num2 + num1);
                if (tokens[i] == "-") st.push(num2 - num1);
                if (tokens[i] == "*") st.push(num2 * num1);
                if (tokens[i] == "/") st.push(num2 / num1);
            } else {
                st.push(stoll(tokens[i]));
            }
        }

        long long result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
        return result;
    }
};

【leetcode 239】滑动窗口的最大值 【补】

image.png

【leetcode 347】前K个高频元素

image.png priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)

伪代码

for(i = 0;i < nums.size();i++){
    map[nums[i]]++;
}
priority_queue(<key,value> que,cmp);

for(map ! it){
    que.push(it);
    if(que.size > k) que.pop();
}
vextor<int> result;
for(i = k-1; i >= 0; i--){
    result[i] = que.top.first;
    que.pop
}

代码

class Solution {
public:
    // 小顶堆
    class mycomparison {
    public:
        bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 要统计元素出现频率
        unordered_map<int, int> map; // map<nums[i],对应出现的次数>
        for (int i = 0; i < nums.size(); i++) {
            map[nums[i]]++;
        }

        // 对频率排序
        // 定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;

        // 用固定大小为k的小顶堆,扫面所有频率的数值
        for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
            pri_que.push(*it);
            if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }

        // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
        vector<int> result(k);
        for (int i = k - 1; i >= 0; i--) {
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;

    }
};
  • 时间复杂度: O(nlogk)
  • 空间复杂度: O(n)