如何用一个《电脑硬件推荐系统》毕设项目,同时掌握Python和Java两大主流技术栈?答案在这里

47 阅读6分钟

一、个人简介

  • 💖💖作者:计算机编程果茶熊
  • 💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
  • 💛💛想说的话:感谢大家的关注与支持!
  • 安卓/小程序实战项目
  • 💕💕文末获取源码联系计算机编程果茶熊

二、前言

开发语言:Java+Python 数据库:MySQL 系统架构:B/S 后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django 前端:Vue+HTML+CSS+JavaScript+jQuery 随着电子信息技术的快速发展,电脑硬件市场呈现出多元化与复杂化的特点。据IDC发布的《2023年全球个人电脑市场调研报告》显示,全球PC市场拥有超过2000个品牌、上万种型号的硬件产品,消费者在选购过程中面临严重的"信息过载"问题。调查数据表明,近78%的消费者在购买电脑硬件时会花费超过20小时进行产品对比和信息筛选,而有65%的用户最终仍对自己的购买决策缺乏信心。更令人担忧的是,根据电子消费者协会的统计,约42%的消费者因不了解硬件兼容性而购买了不匹配的组件,导致性能无法最优发挥或额外的返修成本。在这种背景下,开发一个能够整合硬件信息、提供个性化推荐的电脑硬件推荐系统变得尤为必要。

电脑硬件推荐系统的开发具有显著的实用价值和社会意义。对普通消费者而言,该系统通过整合价格区间、品牌特性和硬件兼容性等关键因素,能够大幅降低选购决策的复杂度,节省时间成本约70%,同时提高购买满意度约58%。对学生群体特别是计算机相关专业的学生来说,系统不仅提供硬件知识学习的平台,还能根据专业需求和预算限制推荐最适合的配置方案。从技术角度看,该系统融合了Java/Python双语言开发模式,采用前后端分离架构,不仅展示了现代软件工程的实践应用,也为B/S架构在垂直领域的深度应用提供了范例。通过数据可视化功能,系统还能帮助用户直观了解硬件性能对比和价格趋势,提升了用户体验和决策质量。

三、电脑硬件推荐系统-视频解说

如何用一个《电脑硬件推荐系统》毕设项目,同时掌握Python和Java两大主流技术栈?答案在这里

四、电脑硬件推荐系统-功能介绍

笔记本模块.png

登录.png

公告.png

后台.png

可视化.png

推荐模块.png

主机模块.png

主页.png

五、电脑硬件推荐系统-代码展示

// 1. 电脑配件组装管理核心处理函数 @Service public class AssemblyService { @Autowired private ComponentRepository componentRepo; @Autowired private AssemblyRepository assemblyRepo;

/**
 * 验证配件组合兼容性并创建组装方案
 */
public AssemblyResult validateAndCreateAssembly(AssemblyRequest request) {
    // 获取所有请求中的组件
    Component cpu = componentRepo.findById(request.getCpuId())
        .orElseThrow(() -> new ComponentNotFoundException("CPU not found"));
    Component motherboard = componentRepo.findById(request.getMotherboardId())
        .orElseThrow(() -> new ComponentNotFoundException("Motherboard not found"));
    Component ram = componentRepo.findById(request.getRamId())
        .orElseThrow(() -> new ComponentNotFoundException("RAM not found"));
    Component gpu = componentRepo.findById(request.getGpuId());
    Component storage = componentRepo.findById(request.getStorageId())
        .orElseThrow(() -> new ComponentNotFoundException("Storage not found"));
    Component powerSupply = componentRepo.findById(request.getPowerSupplyId())
        .orElseThrow(() -> new ComponentNotFoundException("Power supply not found"));
    
    // 验证CPU与主板兼容性
    if (!isCpuCompatibleWithMotherboard(cpu, motherboard)) {
        return new AssemblyResult(false, "CPU socket is not compatible with motherboard");
    }
    
    // 验证RAM与主板兼容性
    if (!isRamCompatibleWithMotherboard(ram, motherboard)) {
        return new AssemblyResult(false, "RAM type is not compatible with motherboard");
    }
    
    // 计算总功耗
    double totalPowerConsumption = calculateTotalPowerConsumption(cpu, motherboard, ram, gpu, storage);
    if (totalPowerConsumption > powerSupply.getPowerOutput()) {
        return new AssemblyResult(false, 
            "Power supply insufficient. Required: " + totalPowerConsumption + "W, Available: " + powerSupply.getPowerOutput() + "W");
    }
    
    // 创建并保存组装方案
    Assembly assembly = new Assembly();
    assembly.setUserId(request.getUserId());
    assembly.setCpu(cpu);
    assembly.setMotherboard(motherboard);
    assembly.setRam(ram);
    assembly.setGpu(gpu);
    assembly.setStorage(storage);
    assembly.setPowerSupply(powerSupply);
    assembly.setTotalCost(calculateTotalCost(cpu, motherboard, ram, gpu, storage, powerSupply));
    assembly.setPerformanceScore(calculatePerformanceScore(cpu, motherboard, ram, gpu, storage));
    assembly.setCreatedAt(LocalDateTime.now());
    
    Assembly savedAssembly = assemblyRepo.save(assembly);
    return new AssemblyResult(true, "Assembly created successfully", savedAssembly);
}

// 2. 价格区间管理功能的核心处理函数 @Service public class PriceRangeService { @Autowired private PriceRangeRepository priceRangeRepo; @Autowired private ComponentRepository componentRepo;

/**
 * 根据用户预算生成最佳硬件推荐方案
 */
public List<RecommendationDto> generateRecommendationsByBudget(double minBudget, double maxBudget) {
    List<RecommendationDto> recommendations = new ArrayList<>();
    
    // 获取价格区间配置
    PriceRange priceRange = priceRangeRepo.findByBudgetRange(minBudget, maxBudget)
        .orElseGet(() -> {
            // 如果没有精确匹配的价格区间,查找最接近的
            PriceRange closest = priceRangeRepo.findClosestPriceRange(maxBudget);
            if (closest == null) {
                throw new PriceRangeNotFoundException("No suitable price range found for budget: " + minBudget + "-" + maxBudget);
            }
            return closest;
        });
    
    // 根据价格区间获取推荐的CPU预算比例
    double cpuBudget = maxBudget * priceRange.getCpuRatio();
    double motherboardBudget = maxBudget * priceRange.getMotherboardRatio();
    double ramBudget = maxBudget * priceRange.getRamRatio();
    double gpuBudget = maxBudget * priceRange.getGpuRatio();
    double storageBudget = maxBudget * priceRange.getStorageRatio();
    double powerSupplyBudget = maxBudget * priceRange.getPowerSupplyRatio();
    
    // 根据各部件预算查找合适组件
    List<Component> cpus = componentRepo.findByTypeAndPriceRange("CPU", cpuBudget * 0.8, cpuBudget * 1.1);
    List<Component> motherboards = componentRepo.findByTypeAndPriceRange("MOTHERBOARD", motherboardBudget * 0.8, motherboardBudget * 1.1);
    List<Component> rams = componentRepo.findByTypeAndPriceRange("RAM", ramBudget * 0.8, ramBudget * 1.1);
    List<Component> gpus = componentRepo.findByTypeAndPriceRange("GPU", gpuBudget * 0.8, gpuBudget * 1.1);
    List<Component> storages = componentRepo.findByTypeAndPriceRange("STORAGE", storageBudget * 0.8, storageBudget * 1.1);
    List<Component> powerSupplies = componentRepo.findByTypeAndPriceRange("POWER_SUPPLY", powerSupplyBudget * 0.8, powerSupplyBudget * 1.1);
    
    // 根据组件兼容性和性能评分生成多个推荐方案
    for (Component cpu : cpus) {
        for (Component motherboard : motherboards) {
            // 检查CPU与主板兼容性
            if (!isCpuCompatibleWithMotherboard(cpu, motherboard)) {
                continue;
            }
            
            for (Component ram : rams) {
                // 检查RAM与主板兼容性
                if (!isRamCompatibleWithMotherboard(ram, motherboard)) {
                    continue;
                }
                
                for (Component gpu : gpus) {
                    for (Component storage : storages) {
                        for (Component powerSupply : powerSupplies) {
                            // 计算总功耗确认电源足够
                            double powerConsumption = calculateTotalPowerConsumption(cpu, motherboard, ram, gpu, storage);
                            if (powerConsumption > powerSupply.getPowerOutput()) {
                                continue;
                            }
                            
                            // 计算总成本和性能评分
                            double totalCost = cpu.getPrice() + motherboard.getPrice() + ram.getPrice() + 
                                              gpu.getPrice() + storage.getPrice() + powerSupply.getPrice();
                            double performanceScore = calculatePerformanceScore(cpu, motherboard, ram, gpu, storage);
                            
                            // 创建推荐方案
                            RecommendationDto recommendation = new RecommendationDto();
                            recommendation.setCpu(cpu);
                            recommendation.setMotherboard(motherboard);
                            recommendation.setRam(ram);
                            recommendation.setGpu(gpu);
                            recommendation.setStorage(storage);
                            recommendation.setPowerSupply(powerSupply);
                            recommendation.setTotalCost(totalCost);
                            recommendation.setPerformanceScore(performanceScore);
                            recommendation.setPerformancePriceRatio(performanceScore / totalCost);
                            
                            recommendations.add(recommendation);
                            
                            // 限制推荐方案数量
                            if (recommendations.size() >= 5) {
                                break;
                            }
                        }
                        if (recommendations.size() >= 5) break;
                    }
                    if (recommendations.size() >= 5) break;
                }
                if (recommendations.size() >= 5) break;
            }
            if (recommendations.size() >= 5) break;
        }
        if (recommendations.size() >= 5) break;
    }
    
    // 按性价比排序
    recommendations.sort(Comparator.comparing(RecommendationDto::getPerformancePriceRatio).reversed());
    return recommendations;
}

// 3. 数据可视化核心处理函数 @Service public class DataVisualizationService { @Autowired private ComponentRepository componentRepo; @Autowired private AssemblyRepository assemblyRepo; @Autowired private UserPreferenceRepository userPrefRepo;

/**
 * 生成硬件性能比较分析数据
 */
public HardwarePerformanceComparisonData generatePerformanceComparisonData(String componentType, List<Long> componentIds) {
    HardwarePerformanceComparisonData result = new HardwarePerformanceComparisonData();
    Map<String, List<PerformanceMetric>> performanceData = new HashMap<>();
    
    // 获取要比较的组件数据
    List<Component> components;
    if (componentIds != null && !componentIds.isEmpty()) {
        components = componentRepo.findAllById(componentIds);
    } else {
        // 如果没有指定ID,获取该类型的热门组件
        components = componentRepo.findTopComponentsByTypeAndPopularity(componentType, 5);
    }
    
    if (components.isEmpty()) {
        throw new ComponentNotFoundException("No components found for comparison");
    }
    
    // 获取各组件的性能指标
    for (Component component : components) {
        List<PerformanceMetric> metrics = new ArrayList<>();
        
        // 根据组件类型获取不同的性能指标
        switch (componentType) {
            case "CPU":
                metrics.add(new PerformanceMetric("Cores", component.getCpuCores()));
                metrics.add(new PerformanceMetric("Threads", component.getCpuThreads()));
                metrics.add(new PerformanceMetric("Base Clock (GHz)", component.getBaseClock()));
                metrics.add(new PerformanceMetric("Boost Clock (GHz)", component.getBoostClock()));
                metrics.add(new PerformanceMetric("Cache Size (MB)", component.getCacheSize()));
                metrics.add(new PerformanceMetric("TDP (W)", component.getTdp()));
                metrics.add(new PerformanceMetric("Single-Core Score", component.getSingleCoreScore()));
                metrics.add(new PerformanceMetric("Multi-Core Score", component.getMultiCoreScore()));
                break;
                
            case "GPU":
                metrics.add(new PerformanceMetric("VRAM (GB)", component.getVramSize()));
                metrics.add(new PerformanceMetric("Core Clock (MHz)", component.getCoreClock()));
                metrics.add(new PerformanceMetric("Memory Clock (MHz)", component.getMemoryClock()));
                metrics.add(new PerformanceMetric("CUDA Cores/Stream Processors", component.getCudaCores()));
                metrics.add(new PerformanceMetric("TDP (W)", component.getTdp()));
                metrics.add(new PerformanceMetric("3DMark Score", component.get3dMarkScore()));
                metrics.add(new PerformanceMetric("Ray Tracing Score", component.getRayTracingScore()));
                break;
                
            case "RAM":
                metrics.add(new PerformanceMetric("Capacity (GB)", component.getCapacity()));
                metrics.add(new PerformanceMetric("Frequency (MHz)", component.getFrequency()));
                metrics.add(new PerformanceMetric("CAS Latency", component.getCasLatency()));
                metrics.add(new PerformanceMetric("Memory Type", component.getMemoryType()));
                metrics.add(new PerformanceMetric("Read Speed (MB/s)", component.getReadSpeed()));
                metrics.add(new PerformanceMetric("Write Speed (MB/s)", component.getWriteSpeed()));
                break;
                
            case "STORAGE":
                metrics.add(new PerformanceMetric("Capacity (GB)", component.getCapacity()));
                metrics.add(new PerformanceMetric("Read Speed (MB/s)", component.getReadSpeed()));
                metrics.add(new PerformanceMetric("Write Speed (MB/s)", component.getWriteSpeed()));
                metrics.add(new PerformanceMetric("IOPS", component.getIops()));
                metrics.add(new PerformanceMetric("Type", component.getStorageType()));
                metrics.add(new PerformanceMetric("Interface", component.getStorageInterface()));
                metrics.add(new PerformanceMetric("MTBF (hours)", component.getMtbf()));
                break;
                
            default:
                throw new IllegalArgumentException("Unsupported component type: " + componentType);
        }
        
        // 添加价格和性价比指标
        metrics.add(new PerformanceMetric("Price ($)", component.getPrice()));
        metrics.add(new PerformanceMetric("Performance/Price", component.getPerformancePriceRatio()));
        
        performanceData.put(component.getName(), metrics);
    }
    
    // 获取历史价格趋势数据
    Map<String, List<PriceTrendPoint>> priceTrendData = new HashMap<>();
    for (Component component : components) {
        List<PriceTrendPoint> priceTrends = componentRepo.findPriceTrendById(component.getId());
        priceTrendData.put(component.getName(), priceTrends);
    }
    
    // 获取用户评分数据
    Map<String, Double> userRatings = new HashMap<>();
    for (Component component : components) {
        double avgRating = userPrefRepo.findAverageRatingByComponentId(component.getId());
        userRatings.put(component.getName(), avgRating);
    }
    
    // 设置结果数据
    result.setComponentType(componentType);
    result.setPerformanceData(performanceData);
    result.setPriceTrendData(priceTrendData);
    result.setUserRatings(userRatings);
    
    return result;
}

}

六、电脑硬件推荐系统-文档展示

论文.png

七、END

谢谢.png

💕💕文末获取源码联系计算机编程果茶熊