一、线程同步的概念
首先,观察以下代码:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#define NUM_THREAD 100
void *thread_inc(void *arg);
void *thread_des(void *arg);
long long num = 0;
int main(int argc, char *argv[])
{
pthread_t thread_id[NUM_THREAD];
int i;
printf("sizeof long long: %d \n", sizeof(long long));
for (i = 0; i < NUM_THREAD; i++)
{
if (i % 2)
pthread_create(&(thread_id[i]), NULL, thread_inc, NULL);
else
pthread_create(&(thread_id[i]), NULL, thread_des, NULL);
}
for (i = 0; i < NUM_THREAD; i++)
pthread_join(thread_id[i], NULL);
printf("result: %lld \n", num);
return 0;
}
void *thread_inc(void *arg)
{
int i;
for (i = 0; i < 50000000; i++)
num += 1;
return NULL;
}
void *thread_des(void *arg)
{
int i;
for (i = 0; i < 50000000; i++)
num -= 1;
return NULL;
}
以上代码运行结果为:
从图上可以看出,每次运行的结果竟然不一样。理论上来说,上面代码的最后结果应该是 0 。
以上程序问题如下:
2 个线程正在同时访问全局变量 num
任何内存空间,只要被同时访问,都有可能发生问题。
因此,线程访问变量 num 时应该阻止其他线程访问,直到线程 1 运算完成。这就是同步(Synchronization)
临界区可以定义为如下形式:
函数内同时运行多个线程时引发问题的多条语句构成的代码块
void *thread_inc(void *arg)
{
int i;
for (i = 0; i < 50000000; i++)
num += 1;//临界区
return NULL;
}
void *thread_des(void *arg)
{
int i;
for (i = 0; i < 50000000; i++)
num -= 1;//临界区
return NULL;
}
由上述代码可知,临界区并非 num 本身,而是访问 num 的两条语句,这两条语句可能由多个线程同时运行,也是引起这个问题的直接原因。产生问题的原因可以分为以下三种情况:
- 2 个线程同时执行 thread_inc 函数
- 2 个线程同时执行 thread_des 函数
- 2 个线程分别执行 thread_inc 和 thread_des 函数
也就是说,两条不同的语句由不同的线程执行时,也有可能构成临界区。前提是这 2 条语句访问同一内存空间。
二、线程同步的方式
1、互斥量
互斥锁(英语:英语:Mutual exclusion,缩写 Mutex)是一种用于多线程编程中,防止两条线程同时对同一公共资源(比如全域变量)进行读写的机制。该目的通过将代码切片成一个一个的临界区域(critical section)达成。临界区域指的是一块对公共资源进行访问的代码,并非一种机制或是算法。一个程序、进程、线程可以拥有多个临界区域,但是并不一定会应用互斥锁。
通俗的说就互斥量就是一把优秀的锁,当临界区被占据的时候就上锁,等占用完毕然后再放开。
下面是互斥量的创建及销毁函数。
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
/*
成功时返回 0,失败时返回其他值
mutex : 创建互斥量时传递保存互斥量的变量地址值,销毁时传递需要销毁的互斥量地址
attr : 传递即将创建的互斥量属性,没有特别需要指定的属性时传递 NULL
*/
从上述函数声明中可以看出,为了创建相当于锁系统的互斥量,需要声明如下 pthread_mutex_t 型变量:
pthread_mutex_t mutex
该变量的地址值传递给 pthread_mutex_init 函数,用来保存操作系统创建的互斥量(锁系统)。调用 pthread_mutex_destroy 函数时同样需要该信息。如果不需要配置特殊的互斥量属性,则向第二个参数传递 NULL 时,可以利用 PTHREAD_MUTEX_INITIALIZER 进行如下声明:
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
推荐尽可能的使用 pthread_mutex_init 函数进行初始化,因为通过宏进行初始化时很难发现发生的错误。 下面是利用互斥量锁住或释放临界区时使用的函数。
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
/*
成功时返回 0 ,失败时返回其他值
*/
函数本身含有 lock unlock 等词汇,很容易理解其含义。进入临界区前调用的函数就是 pthread_mutex_lock 。调用该函数时,发现有其他线程已经进入临界区,则 pthread_mutex_lock 函数不会返回,直到里面的线程调用 pthread_mutex_unlock 函数退出临界区位置。也就是说,其他线程让出临界区之前,当前线程一直处于阻塞状态。接下来整理一下代码的编写方式:
pthread_mutex_lock(&mutex);
//临界区开始
//...
//临界区结束
pthread_mutex_unlock(&mutex);
简言之,就是利用 lock 和 unlock 函数围住临界区的两端。此时互斥量相当于一把锁,阻止多个线程同时访问,还有一点要注意,线程退出临界区时,如果忘了调用 pthread_mutex_unlock 函数,那么其他为了进入临界区而调用 pthread_mutex_lock 的函数无法摆脱阻塞状态。这种情况称为「死锁」。需要格外注意,下面是利用互斥量解决示例 thread4.c 中遇到的问题代码:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#define NUM_THREAD 100
void *thread_inc(void *arg);
void *thread_des(void *arg);
long long num = 0;
pthread_mutex_t mutex; //保存互斥量读取值的变量
int main(int argc, char *argv[])
{
pthread_t thread_id[NUM_THREAD];
int i;
pthread_mutex_init(&mutex, NULL); //创建互斥量
for (i = 0; i < NUM_THREAD; i++)
{
if (i % 2)
pthread_create(&(thread_id[i]), NULL, thread_inc, NULL);
else
pthread_create(&(thread_id[i]), NULL, thread_des, NULL);
}
for (i = 0; i < NUM_THREAD; i++)
pthread_join(thread_id[i], NULL);
printf("result: %lld \n", num);
pthread_mutex_destroy(&mutex); //销毁互斥量
return 0;
}
void *thread_inc(void *arg)
{
int i;
pthread_mutex_lock(&mutex); //上锁
for (i = 0; i < 5000000; i++)
num += 1;
pthread_mutex_unlock(&mutex); //解锁
return NULL;
}
void *thread_des(void *arg)
{
int i;
pthread_mutex_lock(&mutex);
for (i = 0; i < 5000000; i++)
num -= 1;
pthread_mutex_unlock(&mutex);
return NULL;
}
运行结果:
从运行结果可以看出,通过互斥量机制得出了正确的运行结果。
2、信号量
信号量(英语:Semaphore)又称为信号标,是一个同步对象,用于保持在0至指定最大值之间的一个计数值。当线程完成一次对该semaphore对象的等待(wait)时,该计数值减一;当线程完成一次对semaphore对象的释放(release)时,计数值加一。当计数值为0,则线程等待该semaphore对象不再能成功直至该semaphore对象变成signaled状态。semaphore对象的计数值大于0,为signaled状态;计数值等于0,为nonsignaled状态.
semaphore对象适用于控制一个仅支持有限个用户的共享资源,是一种不需要使用忙碌等待(busy waiting)的方法。
信号量的概念是由荷兰计算机科学家艾兹赫尔·戴克斯特拉(Edsger W. Dijkstra)发明的,广泛的应用于不同的操作系统中。在系统中,给予每一个进程一个信号量,代表每个进程当前的状态,未得到控制权的进程会在特定地方被强迫停下来,等待可以继续进行的信号到来。如果信号量是一个任意的整数,通常被称为计数信号量(Counting semaphore),或一般信号量(general semaphore);如果信号量只有二进制的0或1,称为二进制信号量(binary semaphore)。在linux系统中,二进制信号量(binary semaphore)又称互斥锁(Mutex)。
下面介绍信号量,在互斥量的基础上,很容易理解信号量。此处只涉及利用「二进制信号量」(只用 0 和 1)完成「控制线程顺序」为中心的同步方法。下面是信号量的创建及销毁方法:
#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
/*
成功时返回 0 ,失败时返回其他值
sem : 创建信号量时保存信号量的变量地址值,销毁时传递需要销毁的信号量变量地址值
pshared : 传递其他值时,创建可由多个进程共享的信号量;传递 0 时,创建只允许 1 个进程内部使用的信号量。需要完成同一进程的线程同步,故为0
value : 指定创建信号量的初始值
*/
上述的 pshared 参数超出了我们的关注范围,故默认向其传递为 0 。下面是信号量中相当于互斥量 lock unlock 的函数。
#include <semaphore.h>
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);
/*
成功时返回 0 ,失败时返回其他值
sem : 传递保存信号量读取值的变量地址值,传递给 sem_post 的信号量增1,传递给 sem_wait 时信号量减一
*/
调用 sem_init 函数时,操作系统将创建信号量对象,此对象中记录这「信号量值」(Semaphore Value)整数。该值在调用 sem_post 函数时增加 1 ,调用 wait_wait 函数时减一。但信号量的值不能小于 0 ,因此,在信号量为 0 的情况下调用 sem_wait 函数时,调用的线程将进入阻塞状态(因为函数未返回)。当然,此时如果有其他线程调用 sem_post 函数,信号量的值将变为 1 ,而原本阻塞的线程可以将该信号重新减为 0 并跳出阻塞状态。实际上就是通过这种特性完成临界区的同步操作,可以通过如下形式同步临界区(假设信号量的初始值为 1)
sem_wait(&sem);//信号量变为0...
// 临界区的开始
//...
//临界区的结束
sem_post(&sem);//信号量变为1...
上述代码结构中,调用 sem_wait 函数进入临界区的线程在调用 sem_post 函数前不允许其他线程进入临界区。信号量的值在 0 和 1 之间跳转,因此,具有这种特性的机制称为「二进制信号量」。接下来的代码是信号量机制的代码。下面代码并非是同时访问的同步,而是关于控制访问顺序的同步,该场景为:
线程 A 从用户输入得到值后存入全局变量 num ,此时线程 B 将取走该值并累加。该过程一共进行 5 次,完成后输出总和并退出程序。
下面是代码:
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
void *read(void *arg);
void *accu(void *arg);
static sem_t sem_one;
static sem_t sem_two;
static int num;
int main(int argc, char const *argv[]) {
pthread_t id_t1, id_t2;
sem_init(&sem_one, 0, 0);
sem_init(&sem_two, 0, 1);
pthread_create(&id_t1, NULL, read, NULL);
pthread_create(&id_t2, NULL, accu, NULL);
pthread_join(id_t1, NULL);
pthread_join(id_t2, NULL);
sem_destroy(&sem_one);
sem_destroy(&sem_two);
return 0;
}
void *read(void *arg) {
int i;
for (i = 0; i < 5; i++)
{
fputs("Input num: ", stdout);
sem_wait(&sem_two);
scanf("%d", &num);
sem_post(&sem_one);
}
return NULL;
}
void *accu(void *arg) {
int sum = 0, i;
for (i = 0; i < 5; i++)
{
sem_wait(&sem_one);
sum += num;
sem_post(&sem_two);
}
printf("Result: %d \n", sum);
return NULL;
}
运行结果:
从上述代码可以看出,设置了两个信号量 one 的初始值为 0 ,two 的初始值为 1,然后在调用函数的时候,「读」的前提是 two 可以减一,如果不能减一就会阻塞在这里,一直等到「计算」操作完毕后,给 two 加一,然后就可以继续执行下一句输入。对于「计算」函数,也一样。
三、多线程服务器
下面是多个客户端之间可以交换信息的简单聊天程序: 服务端的chat_server.c的实现:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <pthread.h>
#define BUF_SIZE 100
#define MAX_CLNT 256
void *handle_clnt(void *arg);
void send_msg(char *msg, int len);
void error_handling(char *msg);
int clnt_cnt = 0;
int clnt_socks[MAX_CLNT];
pthread_mutex_t mutx;
int main(int argc, char *argv[]) {
int serv_sock, clnt_sock;
struct sockaddr_in serv_adr, clnt_adr;
int clnt_adr_sz;
pthread_t t_id;
if (argc != 2) {
printf("Usage : %s <port>\n", argv[0]);
exit(1);
}
// 初始化互斥量
pthread_mutex_init(&mutx, NULL);
serv_sock = socket(PF_INET, SOCK_STREAM, 0);
// 将socket文件描述符和本地的IP端口绑定到一起
memset(&serv_adr, 0, sizeof(serv_adr));
serv_adr.sin_family = AF_INET;
serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_adr.sin_port = htons(atoi(argv[1]));
if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) {
error_handling("bind() error");
}
if (listen(serv_sock, 5) == -1)
error_handling("listen() error");
while (1) {
clnt_adr_sz = sizeof(clnt_adr);
clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &clnt_adr_sz);
pthread_mutex_lock(&mutx); // 上锁
clnt_socks[clnt_cnt++] = clnt_sock; // 写入新连接
pthread_mutex_unlock(&mutx); // 解锁
pthread_create(&t_id, NULL, handle_clnt, (void *)&clnt_sock); //创建线程为新客户端服务,并且把clnt_sock作为参数传递
pthread_detach(t_id); //引导线程销毁,不阻塞
printf("Connected client IP: %s \n", inet_ntoa(clnt_adr.sin_addr)); //客户端连接的ip地址
}
return 0;
}
void *handle_clnt(void *arg) {
int clnt_sock = *((int *)arg);
int str_len = 0, i;
char msg[BUF_SIZE];
//接收到消息为0,代表当前客户端已经断开连接
while ((str_len = read(clnt_sock, msg, sizeof(msg))) != 0)
send_msg(msg, str_len);
pthread_mutex_lock(&mutx); // 给临界区上锁
//删除没有连接的客户端
for (i = 0; i < clnt_cnt; i++) {
if (clnt_sock == clnt_socks[i]) {
while (i++ < clnt_cnt - 1) {
clnt_socks[i] = clnt_socks[i + 1];
}
break;
}
}
clnt_cnt--;
pthread_mutex_unlock(&mutx); // 给临界区解锁
close(clnt_sock);
return NULL;
}
void send_msg(char *msg, int len) {
int i;
pthread_mutex_lock(&mutx);
for (i = 0; i < clnt_cnt; i++) {
write(clnt_socks[i], msg, len);
}
pthread_mutex_unlock(&mutx);
}
void error_handling(char *msg)
{
fputs(msg, stderr);
fputc('\n', stderr);
exit(1);
}
客户端chat_clnt.c的实现:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <pthread.h>
#define BUF_SIZE 100
#define NAME_SIZE 20
void *send_msg(void *arg);
void *recv_msg(void *arg);
void error_handling(char *msg);
char name[NAME_SIZE] = "[DEFAULT]";
char msg[BUF_SIZE];
int main(int argc, char *argv[]) {
int sock;
struct sockaddr_in serv_addr;
pthread_t snd_thread, rcv_thread;
void *thread_return;
if (argc != 4){
printf("Usage : %s <IP> <port> <name>\n", argv[0]);
exit(1);
}
sprintf(name, "[%s]", argv[3]);
sock = socket(PF_INET, SOCK_STREAM, 0);
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(argv[1]);
serv_addr.sin_port = htons(atoi(argv[2]));
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
error_handling("connect() error");
pthread_create(&snd_thread, NULL, send_msg, (void *)&sock);//创建发送消息线程
pthread_create(&rcv_thread, NULL, recv_msg, (void *)&sock);//创建接受消息线程
pthread_join(snd_thread, &thread_return);
pthread_join(rcv_thread, &thread_return);
close(sock);
return 0;
}
void *send_msg(void *arg) // 发送消息
{
int sock = *((int *)arg);
char name_msg[NAME_SIZE + BUF_SIZE];
while (1)
{
fgets(msg, BUF_SIZE, stdin);
if (!strcmp(msg, "q\n") || !strcmp(msg, "Q\n"))
{
close(sock);
exit(0);
}
sprintf(name_msg, "%s %s", name, msg);
write(sock, name_msg, strlen(name_msg));
}
return NULL;
}
void *recv_msg(void *arg) // 读取消息
{
int sock = *((int *)arg);
char name_msg[NAME_SIZE + BUF_SIZE];
int str_len;
while (1)
{
str_len = read(sock, name_msg, NAME_SIZE + BUF_SIZE - 1);
if (str_len == -1)
return (void *)-1;
name_msg[str_len] = 0;
fputs(name_msg, stdout);
}
return NULL;
}
void error_handling(char *msg)
{
fputs(msg, stderr);
fputc('\n', stderr);
exit(1);
}
上面的服务端示例中,需要掌握临界区的构成,访问全局变量 clnt_cnt 和数组 clnt_socks 的代码将构成临界区,添加和删除客户端时,变量 clnt_cnt 和数组 clnt_socks 将同时发生变化。因此下列情形会导致数据不一致,从而引发错误:
线程 A 从数组 clnt_socks 中删除套接字信息,同时线程 B 读取 clnt_cnt 变量线程 A 读取变量 clnt_cnt ,同时线程 B 将套接字信息添加到 clnt_socks 数组