4.库存分桶扩容改造
在库存扣减接⼝执⾏完后,会检查分桶库存是否需要扩容。当分桶剩余库存⼩于分桶回源数量时,会执行扩容接⼝,即调⽤InventoryBucketServiceImpl的writeBucketCache()⽅法。其中,分桶回源数量是通过库存分桶配置模板表中的回源⽐例计算出的。
其中的缓存一致性方案是:首先将分桶元数据写入库存分桶操作表,然后再由定时任务扫描处理。
首先会判断当前要扩容的分桶是否已有存在的并且扩容失败的标识。为了避免⼀个分桶多次扩容失败频繁锁定中⼼桶的库存,所以当失败次数超过两次之后,剩下的扩容请求就直接拒绝掉。等待扩容的分桶后续流程执⾏完成后,再将失败的次数减少,从而防⽌后续的扩容请求⽆法正常处理。
因为扩容对实时性要求⽐较⾼,所以在处理扩容请求时,会直接尝试执⾏扩容流程。也就是首先尝试扣减中⼼桶,如果中⼼桶因为库存不足扣减失败,那么就直接返回。如果中⼼桶扣减成功,那么才继续执⾏后续分桶扩容操作。
只有在扩容失败时,才会将失败的扩容存储在数据库中,等待后续定时任务扫描兜底处理。
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
@Resource
private TairLock tairLock;
@Resource
private InventoryRepository inventoryRepository;
@Resource
private InventoryBucketCache inventoryBucketCache;
@Resource
private TairCache tairCache;
...
//分桶扩容接口
@Override
public void bucketCapacity(BucketCapacity bucketCapacity) {
long startTime = System.currentTimeMillis();
//获取中心桶的剩余库存
Integer residueNum = getCenterStock(bucketCapacity);
if (residueNum <= 0) {
//中心桶无剩余库存,检查是否触发下线
checkBucketOffline(bucketCapacity);
return;
}
//判断本次扩容的分桶,是否有多次扩容失败的情况
String failNum = tairCache.get(TairInventoryConstant.BUCKET_CAPACITY_FAIL + bucketCapacity.getBucketNo());
if (StringUtils.isNotBlank(failNum) && Integer.parseInt(failNum) >= 2) {
//当前分桶扩容失败次数超过两次了,直接放弃这次扩容
//因为失败太多并且还继续去尝试,会持续的扣减中心桶库存,可能会导致其他可以正常扩容的分桶,没有中心桶库存可以扣减
return;
}
//1.校验是否已经无需扩容了,如果是则快速结束
BucketCapacityContext bucketCapacityContext = checkBucketCapacity(bucketCapacity);
if (!bucketCapacityContext.getIsCapacity()) {
return;
}
//先锁住中心桶库存,避免此时库存发生变化
String key = buildBucketLockKey(bucketCapacity.getSellerId(), bucketCapacity.getSkuId());
String value = SnowflakeIdWorker.getCode();
//获取分布式锁来进行扩容处理
boolean lock = tairLock.tryLock(key, value);
if (lock) {
try {
//再次校验是否需要扩容,此处不允许并发
bucketCapacityContext = checkBucketCapacity(bucketCapacity);
if (bucketCapacityContext.getIsCapacity()) {
//2.获取中心桶库存的库存
residueNum = getCenterStock(bucketCapacity);
//3.可以扩容,计算出可回源的库存进行处理
if (residueNum > 0) {
backSourceInventory(residueNum, bucketCapacityContext);
log.info(bucketCapacity.getBucketNo() + "处理扩容消耗时间{}", System.currentTimeMillis() - startTime);
} else {
//4.中心桶无库存,检查是否触发下线
checkBucketOffline(bucketCapacity);
}
}
} catch (Exception e) {
e.printStackTrace();
} finally {
tairLock.unlock(key, value);
}
} else {
throw new BaseBizException("请求繁忙,稍后重试!");
}
}
//回源库存到分桶上
//@param residueNum 中心桶剩余库存
//@param bucketCapacityContext 扩容上下文对象
private void backSourceInventory(Integer residueNum, BucketCapacityContext bucketCapacityContext) {
BucketCapacity bucketCapacity = bucketCapacityContext.getBucketCapacity();
//先获取本地的分桶元数据信息,获取当前分桶的总发放上限
String key = bucketCapacity.getSellerId() + bucketCapacity.getSkuId();
//中心桶库存key
String sellerInventoryKey = buildSellerInventoryKey(bucketCapacity.getSellerId(), bucketCapacity.getSkuId());
BucketLocalCache bucketLocalCache = inventoryBucketCache.getBucketLocalCache(key);
String bucketNo = "";
try {
InventoryBucketConfigDO inventoryBucketConfig = bucketLocalCache.getInventoryBucketConfig();
List<BucketCacheBO> availableList = bucketLocalCache.getAvailableList();
Integer inventoryNum = 0;
//获取实际配置的最大可用库存深度
Integer maxBucketNum = availableList.stream().mapToInt(BucketCacheBO::getBucketNum).sum();
BucketCacheBO bucketCache = null;
for (BucketCacheBO bucketCacheBO : availableList) {
if (bucketCacheBO.getBucketNo().equals(bucketCapacity.getBucketNo())) {
bucketCache = bucketCacheBO;
bucketNo = bucketCache.getBucketNo();
break;
}
}
//这里没有匹配到分桶,则该分桶已被下线,不处理后续流程
if (Objects.isNull(bucketCache)) {
return;
}
//中心桶库存超过最大深度库存(全部分桶总计),直接以配置的回源步长增长库存
if (residueNum > maxBucketNum) {
inventoryNum = inventoryBucketConfig.getBackSourceStep();
} else {
inventoryNum = calcEvenInventoryNum(maxBucketNum, inventoryBucketConfig, residueNum, bucketCache);
}
//获取扩容后的预估库存深度
Integer maxDepthNum = getMaxDepthNum(inventoryNum, inventoryBucketConfig, bucketCache, bucketCapacityContext);
//更新分桶元数据相关信息
refreshBucketCache(maxDepthNum, bucketLocalCache, bucketCapacity.getBucketNo(), inventoryNum);
//扣减中心桶库存
Integer decr = tairCache.decr(sellerInventoryKey, inventoryNum);
if (decr < 0) {
//中心桶扣减失败,直接返回
throw new BaseBizException(InventoryExceptionCode.INVENTORY_CACHE);
}
//回源分桶的库存
Integer incr = tairCache.retryIncr(bucketCache.getBucketNo(), inventoryNum, 3);
if (incr < 0) {
//这里扣减中心桶成功了,但是回源分桶库存失败了,记录失败的操作,重试,如果重试失败了,则库存返回中心桶
//本次操作的唯一id
String operateId = SnowflakeIdWorker.getCode();
//分桶元数据信息入库
inventoryRepository.saveBucketDetail(operateId, bucketLocalCache, BucketOperateEnum.CAPACITY.getCode(), Lists.newArrayList(bucketCache), inventoryNum);
//考虑到这里同一个分桶,可能会有多个任务没处理完,value值需要用对象来存储
inventoryRepository.saveFailOperate(operateId, TairInventoryConstant.OPERATE_INCR_FAIL, bucketCache.getBucketNo(), inventoryNum);
tairCache.appendJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, bucketCache.getBucketNo(), operateId, inventoryNum);
throw new BaseBizException(InventoryExceptionCode.INVENTORY_CACHE);
}
log.info("本次分桶:{},回源库存:{}, 回源后分桶库存:{}, 中心桶剩余库存:{}", bucketCache.getBucketNo(), inventoryNum, incr, decr);
} catch (Exception e) {
//增加分桶扩容失败次数,如果次数超过两次了,则不会尝试更新缓存,直接写DB,让DB去操作
//DB操作成功,会减少失败次数
tairCache.incr(TairInventoryConstant.BUCKET_CAPACITY_FAIL + bucketNo);
throw new BaseBizException(InventoryExceptionCode.INVENTORY_CACHE);
} finally {
inventoryBucketCache.threadLocalRemove();
}
}
//刷新分桶元数据缓存
//@param maxDepthNum 分桶最大库存深度
//@param bucketLocalCache 分桶元数据信息
//@param bucketNo 分桶编号
private void refreshBucketCache(Integer maxDepthNum, BucketLocalCache bucketLocalCache, String bucketNo, Integer inventoryNum) {
List<BucketCacheBO> availableList = bucketLocalCache.getAvailableList();
for (BucketCacheBO bucketCacheBO : availableList) {
if (bucketCacheBO.getBucketNo().equals(bucketNo)) {
//每次库存具体深度变化都要更细,否则很容易触发回源的比例
bucketCacheBO.setBucketNum(maxDepthNum);
bucketCacheBO.setAllotNum(inventoryNum + (Objects.isNull(bucketCacheBO.getAllotNum()) ? 0 : bucketCacheBO.getAllotNum()));
break;
}
}
String key = buildBucketCacheKey(bucketLocalCache.getSellerId(), bucketLocalCache.getSkuId());
//刷新本地缓存
inventoryBucketCache.setBucketLocalCache(key, bucketLocalCache);
}
...
}
5.库存分桶下线改造
在库存分桶扩容时,如果发现中心桶库存为0,那么会进行下线检查。如果分桶的剩余库存达到下线阈值,那么就会调⽤InventoryBucketServiceImpl的bucketOffline()⽅法进行分桶下线。
其中的缓存一致性方案是:首先将分桶元数据写入库存分桶操作表,然后再由定时任务扫描处理。
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
@Resource
private TairLock tairLock;
@Resource
private InventoryRepository inventoryRepository;
@Resource
private InventoryBucketCache inventoryBucketCache;
@Resource
private TairCache tairCache;
...
//分桶下线接口
@Override
public void bucketOffline(InventorOfflineRequest request) {
//1.验证入参必填
checkInventorOfflineParams(request);
//过滤只有一个分桶的无效请求
Boolean isOffline = checkBucketOffline(request);
if (isOffline) {
long start = System.currentTimeMillis();
//2.注意这里需要锁定 下线分桶的变更,这个接口默认一次只有一个分桶
String key = buildBucketOfflineLockKey(request.getSellerId(), request.getSkuId(), request.getBucketNoList().get(0));
String value = SnowflakeIdWorker.getCode();
boolean lock = tairLock.tryLock(key, value);
if (lock) {
try {
//3.先将准备下线的分桶库存从本地和远程列表中移除至不可用列表,避免新的请求进来
updateBucketCache(request);
log.info("分桶下线处理时间,下线分桶:{}, 当前时间:{}, 耗时:{}", JSON.toJSONString(request.getBucketNoList()), DateFormatUtil.formatDateTime(new Date()), System.currentTimeMillis() - start);
} catch (Exception e) {
e.printStackTrace();
} finally {
tairLock.unlock(key, value);
}
} else {
throw new BaseBizException("请求繁忙,稍后重试!");
}
}
}
//移除本地分桶的对应分桶列表以及远程的分桶列表
//@param request 下线的请求参数列表
private void updateBucketCache(InventorOfflineRequest request) {
//下线的分桶列表
List<String> bucketCacheList = request.getBucketNoList();
String key = buildBucketCacheKey(request.getSellerId(), request.getSkuId());
//1.获取到本地的缓存列表
BucketLocalCache bucketLocalCache = inventoryBucketCache.getBucketLocalCache(request.getSellerId() + request.getSkuId());
try {
//2.填充下线的分桶到不可用列表中
List<BucketCacheBO> offlineBucket = bucketLocalCache.getAvailableList().stream().filter(bucketCacheBO -> bucketCacheList.contains(bucketCacheBO.getBucketNo())).collect(Collectors.toList());
if (CollectionUtils.isEmpty(offlineBucket)) {
//如果下线的分桶过滤后,没有要下线的了,直接返回
return;
}
boolean isOfflineBucket = true;
for (BucketCacheBO bucketCacheBO : offlineBucket) {
if (!StringUtils.isEmpty(bucketCacheBO.getBucketNo())) {
bucketLocalCache.getUndistributedList().add(bucketCacheBO);
isOfflineBucket = false;
}
}
//有合法的下线分桶,才操作
if (isOfflineBucket) {
return;
}
//过滤返回,还上线的分桶列表
List<BucketCacheBO> availableList = bucketLocalCache.getAvailableList().stream().filter(bucketCacheBO -> !bucketCacheList.contains(bucketCacheBO.getBucketNo())).collect(Collectors.toList());
bucketLocalCache.setAvailableList(availableList);
//可用分桶列表大于等于1的时候,才允许分桶下线
if (availableList.size() >= 1) {
//元数据缓存更新,这里会切面处理,为避免出现延迟,先操作远程缓存的元数据覆盖
bucketLocalCache.setOperationType(BucketStatusEnum.OFFLINE_STATUS.getCode());
//发一个消息进行本地缓存的更新,同时切面会发一个消息更新缓存,本地缓存的更新涉及版本号
inventoryBucketCache.setBucketLocalCache(key, bucketLocalCache);
//分桶元数据信息入库,待跑批任务执行
inventoryRepository.saveBucketDetail(null, bucketLocalCache, BucketOperateEnum.OFFLINE.getCode(), offlineBucket, null);
}
} catch (Exception e) {
log.error("分桶下线出现失败", e);
throw new BaseBizException(InventoryExceptionCode.INVENTORY_CACHE);
} finally {
inventoryBucketCache.threadLocalRemove();
}
}
...
}
6.执行库存分桶缓存操作的定时任务
(1)定时任务的入口
在库存入桶分配、分桶上线、分桶扩容、分桶下线四个接口中,都只更新了中⼼桶缓存,而分桶的缓存数据还没处理。
由于这四个接口都会将变更的分桶元数据存储到库存分桶操作表里,所以可以启动定时任务扫描库存分桶操作表中数据,更新分桶的缓存数据。
@Component
public class BucketOperateJobHandler {
@DubboReference(version = "1.0.0")
private InventoryServiceApi inventoryService;
@XxlJob("processBucketOperate")
public void processBucketOperate() {
XxlJobHelper.log("process bucket operate job starting...");
JsonResult result = inventoryService.processBucketOperate();
XxlJobHelper.log("process bucket operate job end, result: {}", result);
}
...
}
(2)定时任务的整体实现流程
⾸先分⻚查询库存分桶操作表中的记录,然后将记录添加到操作队列中。程序启动时会创建⼀个线程池,并开启多个线程,分别去处理操作队列。
在OperateRunner线程中,会不断扫描对应操作队列的数据。只要有数据添加到操作队列中,OperateRunner线程就会去处理操作队列。
当OperateRunner线程获取到操作队列中的分桶操作数据后,⾸先会尝试将该分桶操作的状态设置为处理中。如果设置失败,表示有其他线程已在处理该分桶操作了,不需要继续处理。如果设置成功,则通过策略模式,根据不同的操作类型,执⾏对应的操作。接着设置本次分桶操作的状态为执⾏完成。
当操作队列中的所有分桶操作都执⾏完后,会将其数据状态修改为已完成。然后定时任务会通过while循环间断轮训查出来的所有分桶操作是否已处理。如果是,就会批量修改分桶操作记录的状态,释放锁,结束本次任务。
@Component
public class BucketOperateJobHandler {
@DubboReference(version = "1.0.0")
private InventoryServiceApi inventoryService;
@XxlJob("processBucketOperate")
public void processBucketOperate() {
XxlJobHelper.log("process bucket operate job starting...");
JsonResult result = inventoryService.processBucketOperate();
XxlJobHelper.log("process bucket operate job end, result: {}", result);
}
...
}
//库存服务
@DubboService(version = "1.0.0", interfaceClass = InventoryServiceApi.class, retries = 0)
public class InventoryServiceApiImpl implements InventoryServiceApi {
@Resource
private InventoryBucketService inventoryBucketService;
...
//执行分桶操作
@Override
public JsonResult processBucketOperate() {
try {
inventoryBucketService.processBucketOperate();
return JsonResult.buildSuccess();
} catch (ProductBizException e) {
log.error("biz error", e);
return JsonResult.buildError(e.getErrorCode(), e.getErrorMsg());
} catch (Exception e) {
log.error("system error", e);
return JsonResult.buildError(e.getMessage());
}
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
@Resource
private TairLock tairLock;
@Resource
private InventoryBucketCache inventoryBucketCache;
@Resource
private OperateQueue operateQueue;
@Resource
private InventoryRepository inventoryRepository;
...
//执行分桶操作
@Override
public JsonResult processBucketOperate() {
String code = SnowflakeIdWorker.getCode();
boolean lock = tairLock.lock(TairInventoryConstant.BUCKET_OPERATE_PROCESS, code);
if (lock) {
try {
int page = 1;
//分页获取要执行的操作列表
List<InventoryBucketOperateBO> inventoryBucketOperateBOS = inventoryRepository.queryBucketOperateList(BucketOperateStatusEnum.UN_PROCESS.getCode(), page, operateQueueNum);
while (!CollectionUtils.isEmpty(inventoryBucketOperateBOS)) {
//当前有多少个分桶操作,添加至缓存中
inventoryBucketCache.incrOperateCount(TairInventoryConstant.BUCKET_OPERATE_PROCESS_COUNT, inventoryBucketOperateBOS.size());
//遍历每个分桶操作,添加到操作队列中
for (InventoryBucketOperateBO inventoryBucketOperateBO : inventoryBucketOperateBOS) {
operateQueue.offerByRoundRobin(inventoryBucketOperateBO);
}
//分页获取下一页要执行的分桶操作列表
inventoryBucketOperateBOS = inventoryRepository.queryBucketOperateList(BucketOperateStatusEnum.UN_PROCESS.getCode(), ++page, operateQueueNum);
}
//等待本次查询出的所有分桶操作执行完成,这里不能按照队列的大小来判断
//因为可能操作队列中还有最后一个分桶操作没执行,刚好取出这个分桶操作后还没执行,此时队列大小也为0
while (inventoryBucketCache.getOperateCount(TairInventoryConstant.BUCKET_OPERATE_PROCESS_COUNT) != 0) {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//所有分桶操作都执行过之后,获取id
List<Long> ids = inventoryBucketCache.getOperateId(TairInventoryConstant.BUCKET_OPERATE_PROCESS);
if (!CollectionUtils.isEmpty(ids)) {
log.info("修改分桶操作记录的状态为已完成:{}", JSON.toJSONString(ids));
inventoryRepository.bucketOperateSuccess(ids, BucketOperateStatusEnum.FINISH.getCode());
}
} finally {
inventoryBucketCache.removeOperateId(TairInventoryConstant.BUCKET_OPERATE_PROCESS);
tairLock.unlock(TairInventoryConstant.BUCKET_OPERATE_PROCESS, code);
}
}
return JsonResult.buildSuccess();
}
...
}
@Component
public class OperateQueue {
//处理分桶操作的操作队列
private final List<BlockingQueue> operateQueue = new ArrayList<>();
//配置的操作队列数量
@Value("${bucket.operate.queue-num:32}")
private Integer operateQueueNum;
//处理下一个分桶操作的操作队列在队列列表中的下标
private AtomicInteger index = new AtomicInteger();
@Resource
private TairCache tairCache;
@Resource
private InventoryBucketCache inventoryBucketCache;
@Resource
private BucketOperateStrategyFactory operateFactory;
@PostConstruct
public void init() {
ExecutorService executors = Executors.newFixedThreadPool(operateQueueNum);
for (int i = 0; i < operateQueueNum; i++) {
//设置操作队列的最大容纳数量
BlockingQueue blockingQueue = new ArrayBlockingQueue(150000);
operateQueue.add(blockingQueue);
executors.execute(new OperateRunner(blockingQueue, tairCache, inventoryBucketCache, operateFactory));
}
}
//轮询获取一个操作队列
public boolean offerByRoundRobin(Object object) {
index.compareAndSet(operateQueueNum * 10000, 0);
boolean offer = operateQueue.get(index.getAndIncrement() % operateQueueNum).offer(object);
return offer;
}
}
//多线程消费操作队列中的数据
public class OperateRunner implements Runnable {
//处理分桶操作的队列
private BlockingQueue blockingQueue;
private TairCache tairCache;
private InventoryBucketCache inventoryBucketCache;
private BucketOperateStrategyFactory operateFactory;
public OperateRunner(BlockingQueue blockingQueue, TairCache tairCache, InventoryBucketCache inventoryBucketCache, BucketOperateStrategyFactory operateFactory) {
this.blockingQueue = blockingQueue;
this.tairCache = tairCache;
this.inventoryBucketCache = inventoryBucketCache;
this.operateFactory = operateFactory;
}
//内部线程处理每个操作队列中的数据
@Override
public void run() {
while (true) {
if (CollectionUtils.isEmpty(blockingQueue)) {
try {
Thread.sleep(500);
continue;
} catch (InterruptedException e) {
e.printStackTrace();
}
}
InventoryBucketOperateBO operate = null;
try {
operate = (InventoryBucketOperateBO) blockingQueue.take();
} catch (InterruptedException e) {
log.error("获取分桶任务异常", e);
}
if (operate == null) {
continue;
}
try {
//尝试将分桶操作设置成处理中,成功了则继续处理,失败了表示已经处理了,则直接跳过
if (!tairCache.setNx(TairInventoryConstant.BUCKET_OPERATE_PREFIX + operate.getId(), BucketOperateStatusEnum.PROCESS.getCodeString(), 0)) {
//分桶操作不需要执行,减少分桶操作的总数量
inventoryBucketCache.decrOperateCount(TairInventoryConstant.BUCKET_OPERATE_PROCESS_COUNT);
continue;
}
BucketOperateEnum operateEnum = BucketOperateEnum.getByCode(operate.getOperateType());
if (operateEnum != null) {
//通过策略模式去处理分桶操作
operateFactory.getStrategy(operateEnum.getService()).process(operate);
}
//处理完成,则将分桶操作的状态改为成功
tairCache.set(TairInventoryConstant.BUCKET_OPERATE_PREFIX + operate.getId(), BucketOperateStatusEnum.FINISH.getCodeString(), 0);
//把成功的分桶操作记录的id放到缓存中
inventoryBucketCache.addOperateId(TairInventoryConstant.BUCKET_OPERATE_PROCESS, operate.getId());
//任务执行后,减少分桶操作的总数量
inventoryBucketCache.decrOperateCount(TairInventoryConstant.BUCKET_OPERATE_PROCESS_COUNT);
} catch (Exception e) {
//处理分桶操作异常,将分桶操作的处理状态删除,不然后续再处理,setNx设置状态为处理中时会失败
tairCache.delete(TairInventoryConstant.BUCKET_OPERATE_PREFIX + operate.getId());
//分桶操作执行失败,也减少分桶操作的总数量
inventoryBucketCache.decrOperateCount(TairInventoryConstant.BUCKET_OPERATE_PROCESS_COUNT);
log.error("处理分桶操作异常", e);
}
}
}
}
7.分桶操作之初始化分配库存的处理策略
初始化时,⼀般会上线多个分桶,此时可以通过线程池来处理。通过向线程池提交线程来操作缓存,也就是设置上线分桶的库存数量。
如果缓存操作失败,则需要做回滚操作。即在缓存中记录失败的操作,并把失败的操作写⼊库存操作失败记录表中,等待清除执⾏成功的分桶操作的定时任务来处理回滚操作。
如果有设置分桶库存失败的分桶,则需要从上线分桶列表中删除,防⽌上线失败的分桶被用来扣减库存。
当所有分桶库存设置流程执行完后,就可以将元数据信息写⼊,供库存扣减接⼝使⽤。
//分桶操作路由工厂
@Component
public class BucketOperateStrategyFactory {
@Autowired
private Map<String, AbstractOperateStrategy> operateMap = new ConcurrentHashMap<>(16);
//获取分桶操作处理策略的路由
public AbstractOperateStrategy getStrategy(String operate) {
return operateMap.get(operate);
}
}
//分桶操作的处理策略抽象类
public abstract class AbstractOperateStrategy {
//处理分桶操作
public abstract void process(InventoryBucketOperateBO inventoryBucketOperateBO);
}
//分桶初始化操作的处理策略
@Service("initOperateProcess")
public class InitOperateProcessService extends AbstractOperateStrategy {
@Resource
private InventoryBucketService inventoryBucketService;
@Override
public void process(InventoryBucketOperateBO inventoryBucketOperateBO) {
inventoryBucketService.processInitBucket(inventoryBucketOperateBO);
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//将初始化的分桶数据写入远程缓存以及本地缓存
@Override
public void processInitBucket(InventoryBucketOperateBO inventoryBucketOperateBO) {
//从分桶操作记录中解析出分桶元数据信息
BucketLocalCache bucketLocalCache = JSON.parseObject(inventoryBucketOperateBO.getFeature(), BucketLocalCache.class);
log.info("执行库存初始化{}", JSONObject.toJSONString(inventoryBucketOperateBO));
//1.获取卖家ID + 商品skuId标识
String key = buildBucketCacheKey(bucketLocalCache.getSellerId(), bucketLocalCache.getSkuId());
//2.写入数据到对应的缓存上
List<BucketCacheBO> availableList = bucketLocalCache.getAvailableList();
CountDownLatch latch = new CountDownLatch(availableList.size());
List<String> failBucketNos = Collections.synchronizedList(new ArrayList<>());
for (BucketCacheBO bucketCacheBO : availableList) {
executors.execute(() -> {
log.info("bucketNo:{}, inventoryNum:{}", bucketCacheBO.getBucketNo(), bucketCacheBO.getBucketNum());
boolean setFlag = tairCache.retrySet(bucketCacheBO.getBucketNo(), JSONObject.toJSONString(bucketCacheBO.getBucketNum()), 0, 3);
log.info("set bucket inventory, bucketNo:{}, inventoryNum:{}, successful:{}", bucketCacheBO.getBucketNo(), bucketCacheBO.getBucketNum(), setFlag);
if (!setFlag) {
failBucketNos.add(bucketCacheBO.getBucketNo());
//记录失败,后续处理
tairCache.appendJsonExhset(TairInventoryConstant.OPERATE_SET_FAIL, bucketCacheBO.getBucketNo(), inventoryBucketOperateBO.getOperateId(), bucketCacheBO.getBucketNum());
inventoryRepository.saveFailOperate(inventoryBucketOperateBO.getOperateId(), TairInventoryConstant.OPERATE_SET_FAIL, bucketCacheBO.getBucketNo(), bucketCacheBO.getBucketNum());
}
latch.countDown();
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
if (!CollectionUtils.isEmpty(failBucketNos)) {
bucketLocalCache.getUndistributedList().addAll(failBucketNos.stream().map(BucketCacheBO::new).collect(Collectors.toList()));
availableList = availableList.stream().filter(bucketCacheBO -> failBucketNos.contains(bucketCacheBO.getBucketNo())).collect(Collectors.toList());
bucketLocalCache.setAvailableList(availableList);
}
//3.记录存储到本地缓存列表
bucketLocalCache.setOperationType(BucketStatusEnum.AVAILABLE_STATUS.getCode());
inventoryBucketCache.setBucketLocalCache(key, bucketLocalCache);
log.info("元数据信息:{}", JSONObject.toJSONString(bucketLocalCache));
}
...
}
8.分桶操作之增加库存与分桶上线的处理策略
//分桶操作路由工厂
@Component
public class BucketOperateStrategyFactory {
@Autowired
private Map<String, AbstractOperateStrategy> operateMap = new ConcurrentHashMap<>(16);
//获取分桶操作处理策略的路由
public AbstractOperateStrategy getStrategy(String operate) {
return operateMap.get(operate);
}
}
//分桶操作的处理策略抽象类
public abstract class AbstractOperateStrategy {
//处理分桶操作
public abstract void process(InventoryBucketOperateBO inventoryBucketOperateBO);
}
//分桶上线操作的处理策略
@Service("onlineOperateProcess")
public class OnlineOperateProcessService extends AbstractOperateStrategy {
@Resource
private InventoryBucketService inventoryBucketService;
@Override
public void process(InventoryBucketOperateBO inventoryBucketOperateBO) {
inventoryBucketService.processOnlineOperate(inventoryBucketOperateBO);
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//分桶上线数据写入远程缓存与本地缓存
@Override
public void processOnlineOperate(InventoryBucketOperateBO inventoryBucketOperateBO) {
log.info("执行分桶上线{}", JSONObject.toJSONString(inventoryBucketOperateBO));
//从分桶操作记录中解析出分桶元数据信息
BucketLocalCache bucketLocalCache = JSON.parseObject(inventoryBucketOperateBO.getFeature(), BucketLocalCache.class);
//上线的分桶信息
List<BucketCacheBO> bucketCacheBOList = JSON.parseArray(inventoryBucketOperateBO.getBucket(), BucketCacheBO.class);
//本次操作的id
String operateId = inventoryBucketOperateBO.getOperateId();
String key = buildBucketCacheKey(bucketLocalCache.getSellerId(), bucketLocalCache.getSkuId());
//上线失败的列表
List<String> failBucketNos = Collections.synchronizedList(new ArrayList<>());
CountDownLatch latch = new CountDownLatch(bucketCacheBOList.size());
//1.先更新分桶的上线缓存处理操作
for (BucketCacheBO bucketCacheBO : bucketCacheBOList) {
executors.execute(() -> {
boolean setFlag = tairCache.retrySet(bucketCacheBO.getBucketNo(), JSONObject.toJSONString(bucketCacheBO.getBucketNum()), 0, 3);
if (!setFlag) {
failBucketNos.add(bucketCacheBO.getBucketNo());
//记录失败,后续处理
inventoryRepository.saveFailOperate(operateId, TairInventoryConstant.OPERATE_INCR_FAIL, bucketCacheBO.getBucketNo(), bucketCacheBO.getBucketNum());
tairCache.appendJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, bucketCacheBO.getBucketNo(), operateId, bucketCacheBO.getBucketNum());
}
latch.countDown();
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
if (!CollectionUtils.isEmpty(failBucketNos)) {
bucketLocalCache.getUndistributedList().addAll(failBucketNos.stream().map(BucketCacheBO::new).collect(Collectors.toList()));
bucketLocalCache.setAvailableList(bucketLocalCache.getAvailableList().stream().filter(bucketCacheBO -> failBucketNos.contains(bucketCacheBO.getBucketNo())).collect(Collectors.toList()));
}
//2.处理分桶列表的更新,待中心桶库存以及上线分桶库存更新完成,更新远程和本地的分桶列表
bucketLocalCache.setOperationType(BucketStatusEnum.AVAILABLE_STATUS.getCode());
inventoryBucketCache.setBucketLocalCache(key, bucketLocalCache);
}
...
}
9.分桶操作之分桶扩容的处理策略
尝试执⾏缓存库存增加操作。如果执⾏成功, 则从失败操作记录中移除,并将失败次数减⼀。如果执⾏失败,不做处理,因为会将这次任务设置为执⾏完成,后续清除执⾏成功的分桶操作的定时任务会处理回滚操作。
//分桶操作路由工厂
@Component
public class BucketOperateStrategyFactory {
@Autowired
private Map<String, AbstractOperateStrategy> operateMap = new ConcurrentHashMap<>(16);
//获取分桶操作处理策略的路由
public AbstractOperateStrategy getStrategy(String operate) {
return operateMap.get(operate);
}
}
//分桶操作的处理策略抽象类
public abstract class AbstractOperateStrategy {
//处理分桶操作
public abstract void process(InventoryBucketOperateBO inventoryBucketOperateBO);
}
//分桶扩容操作的处理策略
@Service("capacityOperateProcess")
public class CapacityOperateProcessService extends AbstractOperateStrategy {
@Resource
private InventoryBucketService inventoryBucketService;
@Override
public void process(InventoryBucketOperateBO inventoryBucketOperateBO) {
inventoryBucketService.processCapacityOperate(inventoryBucketOperateBO);
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//处理扩容的分桶操作
@Override
public void processCapacityOperate(InventoryBucketOperateBO operate) {
Long startTime = System.currentTimeMillis();
List<BucketCacheBO> bucketCacheBOList = JSON.parseArray(operate.getBucket(), BucketCacheBO.class);
//回源分桶的库存
String bucketNo = bucketCacheBOList.get(0).getBucketNo();
Integer incr = tairCache.retryIncr(bucketNo, operate.getInventoryNum(), 3);
if (incr >= 0) {
//执行成功,从失败列表中移除,移除数据库
inventoryRepository.deleteBucketOperate(operate.getId());
//移除缓存
tairCache.removeJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, bucketNo, operate.getOperateId());
//回源成功后将失败次数减一
tairCache.decr(TairInventoryConstant.BUCKET_CAPACITY_FAIL + bucketCacheBOList.get(0).getBucketNo(), 1);
}
log.info("执行扩容操作{},本次耗时{},执行结果{}", JSONObject.toJSONString(operate), System.currentTimeMillis() - startTime, incr >= 0 ? true : false);
}
...
}
10.分桶操作之分桶下线的处理策略
这⾥只是发送⼀条清空分桶的延迟消息,等待后续延迟处理分桶的下线。将下线分桶中的剩余库存清空,并放回中⼼桶中。
//分桶操作路由工厂
@Component
public class BucketOperateStrategyFactory {
@Autowired
private Map<String, AbstractOperateStrategy> operateMap = new ConcurrentHashMap<>(16);
//获取分桶操作处理策略的路由
public AbstractOperateStrategy getStrategy(String operate) {
return operateMap.get(operate);
}
}
//分桶操作的处理策略抽象类
public abstract class AbstractOperateStrategy {
//处理分桶操作
public abstract void process(InventoryBucketOperateBO inventoryBucketOperateBO);
}
//分桶下线操作的处理策略
@Service("offlineOperateProcess")
public class OfflineOperateProcessService extends AbstractOperateStrategy {
@Resource
private InventoryBucketService inventoryBucketService;
@Override
public void process(InventoryBucketOperateBO inventoryBucketOperateBO) {
inventoryBucketService.processOfflineOperate(inventoryBucketOperateBO);
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//处理下线的分桶操作
@Override
public void processOfflineOperate(InventoryBucketOperateBO inventoryBucketOperateBO) {
log.info("执行分桶下线{}", JSONObject.toJSONString(inventoryBucketOperateBO));
log.info("发送分桶清空的消息:{}", inventoryBucketOperateBO.getBucket());
BucketLocalCache bucketLocalCache = JSON.parseObject(inventoryBucketOperateBO.getFeature(), BucketLocalCache.class);
List<BucketCacheBO> bucketCacheBOList = JSON.parseArray(inventoryBucketOperateBO.getBucket(), BucketCacheBO.class);
List<String> bucketCacheList = bucketCacheBOList.stream().map(BucketCacheBO::getBucketNo).collect(Collectors.toList());
BucketClearRequest bucketClearRequest = new BucketClearRequest(bucketLocalCache.getSkuId(), bucketLocalCache.getSellerId(), bucketCacheList, 0);
for (int i = 0; i < 3; i++) {
try {
//发送清空下线分桶库存的消息,默认这里不存在需要处理的中心桶库存
bucketClearProducer.sendBucketClear(bucketClearRequest);
//发送成功,直接返回,发送失败,继续处理
return;
} catch (Exception e) {
//这里消息发送失败了,再次尝试发送,失败三次的话,就抛出异常
}
}
//到这里就是消息多次发送失败,需要做其他的处理
throw new ProductBizException(CommonErrorCodeEnum.SEND_MQ_FAILED);
}
...
}
//清空分桶库存的消息队列
@Component
public class BucketClearProducer {
@Autowired
private DefaultProducer defaultProducer;
//清空分桶库存的消息 MQ生产
public void sendBucketClear(BucketClearRequest bucketClearRequest) {
//发送清空分桶库存消息,延迟1秒,留给更多的时间给正在扣减该分桶的线程处理
//分布式本地缓存的消息覆盖通知有一定延迟性,为避免库存数据的错误必须保证分桶已下线才能准确扣减库存
//实际清空库存的任务,也做了对应重试
//获取当前下线分桶库存和回退如果不一致的下线分桶请求,会重新发延迟消息等待下次消费重试
defaultProducer.sendMessage(RocketMqConstant.BUCKET_CLEAR_TOPIC, JSONObject.toJSONString(bucketClearRequest), 1, "清空分桶");
}
}
//处理清空分桶库存的消息
@Component
public class BucketClearListener implements MessageListenerConcurrently {
@Autowired
private InventoryBucketService inventoryBucketService;
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> list, ConsumeConcurrentlyContext consumeConcurrentlyContext) {
try {
for (MessageExt messageExt : list) {
String msg = new String(messageExt.getBody());
BucketClearRequest bucketClearRequest = JsonUtil.json2Object(msg, BucketClearRequest.class);
log.info("执行分桶下线清空库存,消息内容:{}", bucketClearRequest.getBucketNoList());
inventoryBucketService.bucketClear(bucketClearRequest);
}
} catch (Exception e) {
log.error("consume error, 清空分桶库存失败", e);
//本次消费失败,下次重新消费
return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
}
//库存分桶业务实现类
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//清空分桶库存,分桶库存放回中央库存
@Override
public void bucketClear(BucketClearRequest request) {
long start = System.currentTimeMillis();
String key = buildBucketCacheKey(request.getSellerId(), request.getSkuId());
String bucketCache = inventoryBucketCache.getBucketCache(key);
if (!StringUtils.isEmpty(bucketCache)) {
//引用缓存组件需要通过通用对象进行对应的缓存获取
BucketLocalCache bucketLocalCache = JsonUtil.json2Object(bucketCache, BucketLocalCache.class);
updateBucketInventory(request, bucketLocalCache);
}
log.info("清空下线分桶库存:{},时间:{}", JSON.toJSONString(request.getBucketNoList()), System.currentTimeMillis() - start);
//商品库存值预警
warningProductInventory(bucketCache);
}
//将分桶的缓存库存返回给中心桶库存上
private void updateBucketInventory(BucketClearRequest request, BucketLocalCache bucketLocalCache) {
//中心桶的库存key
String key = buildSellerInventoryKey(bucketLocalCache.getSellerId(), bucketLocalCache.getSkuId());
//中心桶需要回源的库存,默认为0
Integer inventoryNum = request.getInventoryNum();
//准备操作下线的分桶
List<String> bucketCacheList = request.getBucketNoList();
//下线的分桶列表
List<String> undistributedList = bucketLocalCache.getUndistributedList().stream().map(BucketCacheBO::getBucketNo).collect(Collectors.toList());
//只处理已经下线的分桶
bucketCacheList = bucketCacheList.stream().filter(undistributedList::contains).collect(Collectors.toList());
//当分桶状态不是已下线的状态,验证这个分桶是否需要处理为下线状态
if (CollectionUtils.isEmpty(bucketCacheList)) {
BucketCapacity bucketCapacity = inventoryConverter.converter(request);
for (String bucketNo : request.getBucketNoList()) {
bucketCapacity.setBucketNo(bucketNo);
//再次校验分桶是否触发下线
checkBucketOffline(bucketCapacity);
}
//不处理分桶库存回退,但是如果有中心桶库存需要重试,这里进行重试
bucketCacheList = new ArrayList<>();
}
//标记处理过程中失败的数据,如果是缓存没有库存这种是不会加入
List<String> failureBucketCacheList = new ArrayList<>();
for (String bucketNo : bucketCacheList) {
//先获取下线的分桶实际剩余库存
String bucketNum = tairCache.get(bucketNo);
//当分桶的库存大于0的时候才处理
if (!StringUtils.isEmpty(bucketNum) && Integer.valueOf(bucketNum) > 0) {
//清理下线的分桶库存,设置为0
Integer result = tairCache.decr(bucketNo, Integer.parseInt(bucketNum));
if (result >= 0) {
log.info("下线分桶,bucketNo:{},desc:{}", bucketNo, bucketNum);
inventoryNum = inventoryNum + Integer.parseInt(bucketNum);
} else {
log.info("分桶已下线,bucketNo:{}", bucketNo);
failureBucketCacheList.add(bucketNo);
}
}
}
if (inventoryNum > 0) {
//将下线的剩余库存加至 中心桶库存上
Integer incr = tairCache.retryIncr(key, inventoryNum, 3);
//当返回的值大于0,则意味本次操作回源中心桶库存成功,标记为0,当存在失败的分桶下线不会累计添加上次任务处理的中心桶库存
log.info("回源中心桶,inventoryNum:{}, after value :{}", inventoryNum, incr);
if (incr >= 0) {
inventoryNum = 0;
}
}
//对本次库存操作失败的分桶信息,重新写入MQ进行重试
//这里只有回退库存失败的或者中心桶库存没有回源成功的才会再次发送
//如果是已经被扣减掉库存的查询的时候会过滤掉
if (!CollectionUtils.isEmpty(failureBucketCacheList) || inventoryNum > 0) {
//发送清空下线分桶库存的消息
bucketClearProducer.sendBucketClear(new BucketClearRequest(bucketLocalCache.getSkuId(), bucketLocalCache.getSellerId(), failureBucketCacheList, inventoryNum));
}
}
...
}
11.清除执⾏成功的分桶操作的定时任务
(1)定时任务概述
这个定时任务主要处理执⾏分桶操作定时任务中处理完成的数据,也就是将库存分桶操作表中状态为已完成的数据查询出来。如果有失败的操作,则回滚该操作,然后删除该任务。
这个定时任务与执⾏分桶操作的定时任务类似,它会分⻚查询执⾏完成的分桶操作,然后放⼊队列中。按照队列处理完成后,整个流程结束,删除表里的分桶操作记录。
(2)具体处理流程
一.处理缓存中有记录的失败的分桶操作
先根据分桶操作记录,处理缓存中有记录的失败的分桶操作。根据记录分桶操作的失败类型,进行对应的回退处理。
如果是初始化分桶库存或分桶上线,则将分配给该分桶的库存放回中⼼桶中,并删除失败的操作记录。
如果是分桶扩容,则将对该分桶进行扩容的库存放回中⼼桶中,并删除当时失败的操作记录,并且将分桶失败的次数减⼀。此时缓存中有记录的、失败的分桶操作就已经处理了。
二.处理缓存中没有但数据库中有的分桶操作记录
当回退任务处理完成之后,删除失败的操作记录,以及分桶操作任务记录。
@Component
public class BucketOperateJobHandler {
@DubboReference(version = "1.0.0")
private InventoryServiceApi inventoryService;
...
@XxlJob("bucketOperateFinishedClear")
public void bucketOperateFinishedClear() {
XxlJobHelper.log("bucket operate finished clear job starting...");
JsonResult result = inventoryService.bucketOperateFinishedClear();
XxlJobHelper.log("bucket operate finished clear job end, result: {}", result);
}
}
@DubboService(version = "1.0.0", interfaceClass = InventoryServiceApi.class, retries = 0)
public class InventoryServiceApiImpl implements InventoryServiceApi {
@Resource
private InventoryBucketService inventoryBucketService;
...
@Override
public JsonResult bucketOperateFinishedClear() {
try {
//处理执行成功的
inventoryBucketService.bucketOperateFinishedClear();
return JsonResult.buildSuccess();
} catch (ProductBizException e) {
log.error("biz error", e);
return JsonResult.buildError(e.getErrorCode(), e.getErrorMsg());
} catch (Exception e) {
log.error("system error", e);
return JsonResult.buildError(e.getMessage());
}
}
...
}
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
@Resource
private OperateClearQueue operateClearQueue;
...
//清除执行成功的分桶操作记录
@Override
public JsonResult bucketOperateFinishedClear() {
String code = SnowflakeIdWorker.getCode();
boolean lock = tairLock.lock(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS, code);
if (lock) {
try {
int page = 1;
List<InventoryBucketOperateBO> inventoryBucketOperateBOS = inventoryRepository.queryBucketOperateList(BucketOperateStatusEnum.FINISH.getCode(), page, operateQueueNum);
while (!CollectionUtils.isEmpty(inventoryBucketOperateBOS)) {
//当前有多少个分桶操作,添加至缓存中
inventoryBucketCache.incrOperateCount(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS_COUNT, inventoryBucketOperateBOS.size());
//将分桶操作轮询添加到操作队列中
for (InventoryBucketOperateBO inventoryBucketOperateBO : inventoryBucketOperateBOS) {
operateClearQueue.offerByRoundRobin(inventoryBucketOperateBO);
}
//分页获取下一页要执行的分桶操作列表
inventoryBucketOperateBOS = inventoryRepository.queryBucketOperateList(BucketOperateStatusEnum.FINISH.getCode(), ++page, operateQueueNum);
}
//等待本次所有分桶操作都处理完成
while (inventoryBucketCache.getOperateCount(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS_COUNT) != 0) {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//删除已经执行完成的分桶操作记录
List<Long> ids = inventoryBucketCache.getOperateId(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS);
if (!CollectionUtils.isEmpty(ids)) {
log.info("清除已完成的任务:{}", JSON.toJSONString(ids));
inventoryRepository.deleteBatchBucketOperate(ids);
}
} finally {
inventoryBucketCache.removeOperateId(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS);
tairLock.unlock(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS, code);
}
}
return JsonResult.buildSuccess();
}
...
}
@Component
public class OperateClearQueue {
//处理分桶操作的操作队列列表
private final List<BlockingQueue> operateQueue = new ArrayList<>();
//配置的操作队列数量
@Value("${bucket.operate.queue-num:32}")
private Integer queueNum;
//处理下一个分桶操作的操作队列在队列列表中的下标
private AtomicInteger index = new AtomicInteger();
@Resource
private InventoryBucketService inventoryBucketService;
@PostConstruct
public void init() {
ExecutorService executors = Executors.newFixedThreadPool(queueNum);
for (int i = 0; i < queueNum; i++) {
//设置操作队列的最大容纳数量
BlockingQueue blockingQueue = new ArrayBlockingQueue(150000);
operateQueue.add(blockingQueue);
executors.execute(new OperateClearRunner(blockingQueue, inventoryBucketService));
}
}
//轮询获取一个操作队列
public boolean offerByRoundRobin(Object object) {
index.compareAndSet(queueNum * 10000, 0);
boolean offer = operateQueue.get(index.getAndIncrement() % queueNum).offer(object);
return offer;
}
}
//多线程消费操作队列中的数据
public class OperateClearRunner implements Runnable {
//处理分桶操作的操作队列
private BlockingQueue blockingQueue;
private InventoryBucketService inventoryBucketService;
public OperateClearRunner(BlockingQueue blockingQueue, InventoryBucketService inventoryBucketService) {
this.blockingQueue = blockingQueue;
this.inventoryBucketService = inventoryBucketService;
}
//内部线程处理每个操作队列的数据
@Override
public void run() {
while (true) {
try {
if (CollectionUtils.isEmpty(blockingQueue)) {
Thread.sleep(500);
continue;
}
InventoryBucketOperateBO operate = (InventoryBucketOperateBO) blockingQueue.take();
inventoryBucketService.clearBucketOperate(operate);
} catch (Exception e) {
log.error("处理分桶操作异常", e);
}
}
}
}
@Service
public class InventoryBucketServiceImpl implements InventoryBucketService {
...
//清除执行完的分桶操作
@Override
public void clearBucketOperate(InventoryBucketOperateBO operate) {
Long startTime = System.currentTimeMillis();
List<InventoryOperateFailBO> inventoryOperateFailBOS = inventoryRepository.queryFailOperateList(operate.getOperateId());
Map<String, InventoryOperateFailBO> operateFailBOMap = inventoryOperateFailBOS.stream().collect(Collectors.toMap(InventoryOperateFailBO::getBucketNo, Function.identity()));
//先处理缓存中存储的失败记录
processCacheRollback(operate, operateFailBOMap);
//再处理缓存中没有存储的但是DB中存储的失败记录
processDbRollback(operate, operateFailBOMap);
if (!CollectionUtils.isEmpty(inventoryOperateFailBOS)) {
//所有的都执行完成了,删除处理完成的数据库记录,缓存记录在处理过程中已经执行了
inventoryRepository.deleteBatchOperateFail(inventoryOperateFailBOS);
}
//执行成功的,删除记录
tairCache.delete(TairInventoryConstant.BUCKET_OPERATE_PREFIX + operate.getId());
inventoryBucketCache.addOperateId(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS, operate.getId());
//任务执行后,减少任务数量
inventoryBucketCache.decrOperateCount(TairInventoryConstant.BUCKET_OPERATE_CLEAR_PROCESS_COUNT);
log.info("本次分桶清除任务耗时{}, 任务对象{}", System.currentTimeMillis() - startTime, JSONObject.toJSONString(operate));
}
//处理缓存中的失败回退
private void processCacheRollback(InventoryBucketOperateBO operate, Map<String, InventoryOperateFailBO> operateFailBOMap) {
List<BucketCacheBO> bucketCacheBOS = JSON.parseArray(operate.getBucket(), BucketCacheBO.class);
//获取中心桶库存的key
String key = buildSellerInventoryKey(operate.getSellerId(), operate.getSkuId());
for (BucketCacheBO bucketCacheBO : bucketCacheBOS) {
//分桶的缓存操作有两个,一个是初始化设置库存,一个是回源增加库存
//获取初始化库存失败的操作
Object bucketNum = tairCache.getJsonExhset(TairInventoryConstant.OPERATE_SET_FAIL, bucketCacheBO.getBucketNo(), operate.getOperateId());
if (!Objects.isNull(bucketNum)) {
//这里是分桶库存初始化失败了,需要将数据放回中心桶
tairCache.incr(key, (Integer) bucketNum);
//处理成功,将失败列表中的数据删除
tairCache.removeJsonExhset(TairInventoryConstant.OPERATE_SET_FAIL, bucketCacheBO.getBucketNo(), operate.getOperateId());
operateFailBOMap.remove(bucketCacheBO.getBucketNo());
}
//获取增加库存失败的操作
bucketNum = tairCache.getJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, bucketCacheBO.getBucketNo(), operate.getOperateId());
if (!Objects.isNull(bucketNum)) {
//这里是分桶库存增加失败了,需要将数据放回中心桶
tairCache.incr(key, (Integer) bucketNum);
//处理成功,将失败列表中的数据删除
tairCache.removeJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, bucketCacheBO.getBucketNo(), operate.getOperateId());
operateFailBOMap.remove(bucketCacheBO.getBucketNo());
//处理完回退之后,如果是扩容的,需要将扩容失败次数减一
if (BucketOperateEnum.CAPACITY.getCode().equals(operate.getOperateType())) {
tairCache.decr(TairInventoryConstant.BUCKET_CAPACITY_FAIL + bucketCacheBO.getBucketNo(), 1);
}
}
}
}
//处理数据库中的失败回退
private void processDbRollback(InventoryBucketOperateBO operate, Map<String, InventoryOperateFailBO> operateFailBOMap) {
//获取中心桶库存的key
String key = buildSellerInventoryKey(operate.getSellerId(), operate.getSkuId());
//如果缓存中数据操作完,数据库中还有未处理的,需要处理数据库中的
if (!CollectionUtils.isEmpty(operateFailBOMap)) {
for (Map.Entry<String, InventoryOperateFailBO> entry : operateFailBOMap.entrySet()) {
InventoryOperateFailBO operateFailBO = entry.getValue();
if (TairInventoryConstant.OPERATE_SET_FAIL.equals(operateFailBO.getFailType())) {
//这里是分桶库存初始化失败了,需要将数据放回中心桶
tairCache.incr(key, operateFailBO.getInventoryNum());
//处理成功,将失败列表中的数据删除
tairCache.removeJsonExhset(TairInventoryConstant.OPERATE_SET_FAIL, operateFailBO.getBucketNo(), operate.getOperateId());
} else if (TairInventoryConstant.OPERATE_INCR_FAIL.equals(operateFailBO.getFailType())) {
//这里是分桶库存增加失败了,需要将数据放回中心桶
tairCache.incr(key, operateFailBO.getInventoryNum());
//处理成功,将失败列表中的数据删除
tairCache.removeJsonExhset(TairInventoryConstant.OPERATE_INCR_FAIL, operateFailBO.getBucketNo(), operate.getOperateId());
//处理完回退之后,如果是扩容的,需要将扩容失败次数减一
if (BucketOperateEnum.CAPACITY.getCode().equals(operate.getOperateType())) {
//扩容时,一次操作只有一个分桶数据变更
//所以这里跟缓存中获取的失败记录,最多执行一次,不会导致这次失败的任务,将其他任务的次数减去了
tairCache.decr(TairInventoryConstant.BUCKET_CAPACITY_FAIL + operateFailBO.getBucketNo(), 1);
}
}
}
}
}
...
}
文章转载自: 东阳马生架构