STM32使用内部参考电压计算外部VDDA提高ADC测量精度

489 阅读3分钟

STM32使用内部参考电压计算外部VDDA提高ADC测量精度

手册解读

引脚比较少的STM32一般都是不带Vref引脚的,并且Vref一般都是直接接到VDDA上的,VDDA的值一般不是稳定的3.3V。如下图所示:

为了提高ADC测量精度,厂家提供的了内部参考电压,这个参考电压是相对比较稳定的,且出厂前厂家都做了校准。本次我使用的是STM32F0,校准是在3.3V的电压下进行的,手册内容如下:

这个校准值存在地址0x1FFFF7BA-0x1FFFF7BB​上,是一个16位的数据,首先将变量强制转换成指向16位数据的地址,再指针解引用读出数据*((uint16_t *)0x1FFFF7BA)​,不同单片机地址不同,看手册读取即可。

再看STM32F0的参考手册,根据如下公式计算出VDDA

VDDA_Charac这个值看图2中的Description,是3.3V,像STM32H7直接给出VDDA_Charac为3.3V,就不需要去看手册了。也有些型号的芯片这个值不是3.3V。VREFINT_DATA这个值是ADC读取内部电压的值。然后根据以下公式就能算出ADC测量通道的值了。

例程

CubeMX配置

使用外部时钟

时钟频率为48MHz

调试引脚配置

ADC配置

ADC使用中断方法读取,配置如下

代码如下

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2025 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define VREFINT_CAL_ADDR ((uint16_t *)0x1FFFF7BA)
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
uint16_t VREFINT_CAL = 0;
uint16_t VREFINT_DATA = 0;
float VDDA = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
 * @brief  The application entry point.
 * @retval int
 */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC_Init();
  /* USER CODE BEGIN 2 */
  HAL_ADCEx_Calibration_Start(&hadc);
  HAL_ADC_Start_IT(&hadc);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    VREFINT_CAL = *VREFINT_CAL_ADDR;
    HAL_Delay(1000);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
   * in the RCC_OscInitTypeDef structure.
   */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI14 | RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSI14State = RCC_HSI14_ON;
  RCC_OscInitStruct.HSI14CalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
   */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
  if (hadc->Instance != ADC1)
  {

    return;
  }
  VREFINT_DATA = HAL_ADC_GetValue(hadc);
  VDDA = 3.3f * VREFINT_CAL / VREFINT_DATA;
  // ntc_set_flag(&ntc_temperature);
}
/* USER CODE END 4 */

/**
 * @brief  This function is executed in case of error occurrence.
 * @retval None
 */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/**
 * @brief  Reports the name of the source file and the source line number
 *         where the assert_param error has occurred.
 * @param  file: pointer to the source file name
 * @param  line: assert_param error line source number
 * @retval None
 */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

仿真结果如图所示,VREFINT_CAL是个定值,是不会变的,VREFINT_DATA是读取内部参考电压的值,是在跳动的,根据公式即可推出VDDA。