LangChain模型调用API(4)

151 阅读33分钟

一、LangChain模型调用API概述

LangChain是一个用于开发由语言模型驱动的应用程序的框架,它提供了一系列API接口,使得开发者可以轻松地与各种语言模型进行交互。这些API接口不仅简化了模型调用的过程,还提供了诸如提示管理、记忆、代理等高级功能,帮助开发者构建更复杂、更智能的应用程序。

LangChain的模型调用API主要分为以下几个核心组件:

  1. LLM(大语言模型)接口:提供与各种大语言模型(如OpenAI GPT、Hugging Face Transformers等)交互的统一接口。

  2. 提示模板(Prompt Template):管理和格式化向模型提供的提示文本。

  3. 输出解析器(Output Parser):处理和解析模型的输出结果。

  4. 链(Chain):将多个组件组合成一个工作流程。

  5. 记忆(Memory):在链的执行过程中保持状态和历史信息。

  6. 代理(Agent):使模型能够自主决策并调用外部工具。

通过这些组件,LangChain提供了一个灵活且强大的框架,使得开发者可以快速构建和部署基于语言模型的应用程序。

二、LLM接口设计与实现

2.1 LLM基类设计

LangChain的LLM接口是与各种大语言模型交互的基础,其设计基于面向对象的原则,提供了统一的抽象接口。LLM基类定义了与模型交互的基本方法和属性:

class LLM(ABC):
    """Base class for all language models."""
    
    @abstractmethod
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Run the LLM on the given prompt and return the output."""
        pass
    
    @property
    @abstractmethod
    def _llm_type(self) -> str:
        """Return type of llm."""
        pass
    
    def generate(self, prompts: List[str], stop: Optional[List[str]] = None) -> LLMResult:
        """Generate text from a list of prompts."""
        results = []
        for prompt in prompts:
            text = self._call(prompt, stop=stop)
            results.append(Generation(text=text))
        return LLMResult(generations=[results])
    
    def get_num_tokens(self, text: str) -> int:
        """Get the number of tokens in the text."""
        # 默认实现,具体模型可能需要重写
        return len(text.split())
    
    # 其他辅助方法...

这个基类定义了与模型交互的核心方法:

  1. _call方法:这是一个抽象方法,具体的LLM实现需要重写这个方法,实现与特定模型的交互。

  2. _llm_type属性:返回LLM的类型,如"openai"、"huggingface"等。

  3. generate方法:处理多个提示的生成,默认实现是循环调用_call方法。

  4. get_num_tokens方法:计算文本中的令牌数量,默认实现是简单的字符串分割,具体模型可能需要重写这个方法。

2.2 具体LLM实现

基于LLM基类,LangChain为不同的模型提供商实现了具体的子类。以OpenAI LLM实现为例:

class OpenAI(LLM):
    """Wrapper around OpenAI large language models."""
    
    openai_api_key: Optional[str] = None
    model_name: str = "text-davinci-003"
    temperature: float = 0.7
    max_tokens: int = 256
    top_p: float = 1
    frequency_penalty: float = 0
    presence_penalty: float = 0
    n: int = 1
    best_of: int = 1
    request_timeout: Optional[Union[float, Tuple[float, float]]] = None
    logit_bias: Optional[Dict[str, float]] = None
    
    def __init__(self, **kwargs: Any):
        """Initialize the OpenAI LLM."""
        super().__init__(**kwargs)
        # 导入OpenAI库并进行初始化
        try:
            import openai
        except ImportError:
            raise ImportError(
                "Could not import openai python package. "
                "Please install it with `pip install openai`."
            )
        self.client = openai.Completion
        if self.openai_api_key is None:
            self.openai_api_key = os.environ.get("OPENAI_API_KEY")
        if self.openai_api_key is None:
            raise ValueError(
                "Did not find OpenAI API key, please add an environment variable "
                "`OPENAI_API_KEY` which contains it, or pass "
                "`openai_api_key` as a named parameter."
            )
    
    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "openai"
    
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call the OpenAI API."""
        try:
            response = self.client.create(
                model=self.model_name,
                prompt=prompt,
                temperature=self.temperature,
                max_tokens=self.max_tokens,
                top_p=self.top_p,
                frequency_penalty=self.frequency_penalty,
                presence_penalty=self.presence_penalty,
                n=self.n,
                best_of=self.best_of,
                stop=stop,
                timeout=self.request_timeout,
                logit_bias=self.logit_bias or {},
            )
            return response.choices[0].text.strip()
        except Exception as e:
            raise ValueError(f"Error calling OpenAI API: {e}") from e
    
    def get_num_tokens(self, text: str) -> int:
        """Get the number of tokens in the text."""
        try:
            import tiktoken
        except ImportError:
            return super().get_num_tokens(text)
        # 使用tiktoken库计算OpenAI模型的令牌数量
        encoding = tiktoken.encoding_for_model(self.model_name)
        return len(encoding.encode(text))

这个实现展示了如何与OpenAI API进行交互:

  1. 初始化过程中,检查并获取API密钥,确保可以访问OpenAI服务。

  2. _llm_type属性返回"openai",标识这是一个OpenAI模型。

  3. _call方法实现了与OpenAI API的具体交互,处理参数设置和API调用。

  4. get_num_tokens方法使用tiktoken库准确计算OpenAI模型的令牌数量。

2.3 LLM接口的扩展性

LLM接口的设计具有很强的扩展性,允许开发者轻松添加对新模型的支持。要添加一个新的LLM实现,只需继承LLM基类,并重写_call_llm_type方法:

class CustomLLM(LLM):
    """Wrapper around a custom large language model."""
    
    model_path: str
    api_endpoint: str
    
    def __init__(self, model_path: str, api_endpoint: str, **kwargs: Any):
        """Initialize the custom LLM."""
        super().__init__(**kwargs)
        self.model_path = model_path
        self.api_endpoint = api_endpoint
        # 初始化自定义模型
    
    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "custom"
    
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call the custom LLM API."""
        # 实现与自定义模型的交互
        response = requests.post(
            self.api_endpoint,
            json={"prompt": prompt, "stop": stop},
            headers={"Content-Type": "application/json"}
        )
        if response.status_code != 200:
            raise ValueError(f"Error calling custom LLM API: {response.text}")
        return response.json()["text"]

这种设计使得LangChain可以轻松支持各种语言模型,包括开源模型和私有部署的模型。

三、提示模板(Prompt Template)实现原理

3.1 提示模板的基本概念

提示模板是LangChain中的一个重要组件,用于管理和格式化向模型提供的提示文本。提示模板允许开发者定义带有变量的提示文本,并在运行时填充这些变量的值。

提示模板的基本接口定义如下:

class BasePromptTemplate(ABC):
    """Base class for all prompt templates."""
    
    input_variables: List[str]
    output_parser: Optional[BaseOutputParser] = None
    
    @abstractmethod
    def format(self, **kwargs: Any) -> str:
        """Format the prompt with the given parameters."""
        pass
    
    @abstractmethod
    def format_prompt(self, **kwargs: Any) -> PromptValue:
        """Format the prompt with the given parameters and return a PromptValue."""
        pass
    
    @property
    @abstractmethod
    def _get_prompt_dict(self) -> Dict:
        """Return a dictionary of the prompt."""
        pass
    
    def validate_input_variables(self) -> None:
        """Validate that all input variables are present."""
        # 检查输入变量是否合法
        if self.input_variables is None:
            raise ValueError("input_variables cannot be None")
        for var in self.input_variables:
            if not isinstance(var, str):
                raise ValueError(f"Input variable {var} must be a string")

3.2 字符串提示模板实现

最常见的提示模板实现是基于字符串的模板,它使用Python的字符串格式化语法:

class PromptTemplate(BasePromptTemplate):
    """A prompt template for a language model."""
    
    template: str
    template_format: str = "f-string"
    validate_template: bool = True
    
    def __init__(
        self,
        input_variables: List[str],
        template: str,
        template_format: str = "f-string",
        validate_template: bool = True,
        **kwargs: Any
    ):
        """Initialize the prompt template."""
        super().__init__(input_variables=input_variables, **kwargs)
        self.template = template
        self.template_format = template_format
        self.validate_template = validate_template
        
        if self.validate_template:
            self._validate_template()
    
    def _validate_template(self) -> None:
        """Validate that the template is valid."""
        if self.template_format == "f-string":
            # 验证f-string格式
            try:
                # 使用ast模块解析f-string
                ast.parse(f'f"{self.template}"')
            except SyntaxError as e:
                raise ValueError(f"Invalid f-string template: {e}")
        elif self.template_format == "jinja2":
            # 验证Jinja2格式
            try:
                from jinja2 import Template
                Template(self.template)
            except Exception as e:
                raise ValueError(f"Invalid Jinja2 template: {e}")
        else:
            raise ValueError(f"Unsupported template format: {self.template_format}")
    
    def format(self, **kwargs: Any) -> str:
        """Format the prompt with the given parameters."""
        # 检查所有必需的输入变量是否都已提供
        missing_vars = set(self.input_variables) - set(kwargs.keys())
        if missing_vars:
            raise ValueError(f"Missing variables: {missing_vars}")
        
        if self.template_format == "f-string":
            # 使用f-string格式化
            return eval(f'f"{self.template}"', kwargs)
        elif self.template_format == "jinja2":
            # 使用Jinja2格式化
            from jinja2 import Template
            return Template(self.template).render(**kwargs)
        else:
            raise ValueError(f"Unsupported template format: {self.template_format}")
    
    def format_prompt(self, **kwargs: Any) -> PromptValue:
        """Format the prompt with the given parameters and return a PromptValue."""
        text = self.format(**kwargs)
        return StringPromptValue(text=text)
    
    @property
    def _get_prompt_dict(self) -> Dict:
        """Return a dictionary of the prompt."""
        return {
            "input_variables": self.input_variables,
            "template": self.template,
            "template_format": self.template_format,
        }

这个实现支持两种常见的模板格式:f-string和Jinja2。它提供了以下功能:

  1. 模板验证:确保模板格式正确,避免运行时错误。

  2. 变量检查:确保所有必需的输入变量都已提供。

  3. 格式化:根据指定的模板格式,将变量值填充到模板中。

3.3 示例:使用提示模板

下面是一个使用提示模板的简单示例:

# 创建一个提示模板
prompt_template = PromptTemplate(
    input_variables=["question", "context"],
    template="""
    Context: {context}
    
    Question: {question}
    
    Answer:
    """
)

# 填充变量
formatted_prompt = prompt_template.format(
    question="What is the capital of France?",
    context="France is a country in Western Europe."
)

# 输出格式化后的提示
print(formatted_prompt)

这个示例展示了如何创建一个简单的提示模板,并使用变量值填充它。提示模板的设计使得提示文本的管理更加灵活和可维护。

四、输出解析器(Output Parser)实现原理

4.1 输出解析器的作用

输出解析器是LangChain中的一个重要组件,用于处理和解析模型的输出结果。模型返回的原始文本可能需要进行格式化、提取特定信息或转换为特定的数据结构,输出解析器就是为了完成这些任务而设计的。

输出解析器的基本接口定义如下:

class BaseOutputParser(ABC):
    """Abstract base class for output parsers."""
    
    @abstractmethod
    def parse(self, text: str) -> Any:
        """Parse the output text and return a structured result."""
        pass
    
    @abstractmethod
    def get_format_instructions(self) -> str:
        """Get format instructions for the output."""
        pass
    
    def __str__(self) -> str:
        """Return a string representation of the output parser."""
        return self.__class__.__name__

4.2 常见输出解析器实现

LangChain提供了多种内置的输出解析器,以满足不同的需求。以下是一些常见的输出解析器实现:

4.2.1 逗号分隔值解析器
class CommaSeparatedListOutputParser(BaseOutputParser[List[str]]):
    """Parse the output of an LLM call to a comma-separated list."""
    
    def parse(self, text: str) -> List[str]:
        """Parse the output text as a comma-separated list."""
        return [item.strip() for item in text.split(",")]
    
    def get_format_instructions(self) -> str:
        """Get format instructions for the output."""
        return "Your answer should be a list of comma-separated values."
4.2.2 JSON解析器
class StructuredOutputParser(BaseOutputParser):
    """Parse the output of an LLM call to a structured object."""
    
    schema: Dict[str, Any]
    
    def __init__(self, schema: Dict[str, Any]):
        """Initialize the parser with a schema."""
        self.schema = schema
    
    def parse(self, text: str) -> Dict[str, Any]:
        """Parse the output text as a JSON object."""
        try:
            return json.loads(text)
        except json.JSONDecodeError as e:
            raise ValueError(f"Failed to parse JSON: {e}") from e
    
    def get_format_instructions(self) -> str:
        """Get format instructions for the output."""
        schema_str = json.dumps(self.schema, indent=2)
        return f"""
        Your answer should be a JSON object formatted according to the following schema:
        {schema_str}
        
        Example:
        {{
            "name": "John Doe",
            "age": 30,
            "hobbies": ["reading", "swimming"]
        }}
        """
4.2.3 正则表达式解析器
class RegexParser(BaseOutputParser):
    """Parse the output using a regular expression."""
    
    regex: str
    output_keys: List[str]
    default_value: Optional[Any] = None
    
    def __init__(self, regex: str, output_keys: List[str], default_value: Optional[Any] = None):
        """Initialize the parser with a regex and output keys."""
        self.regex = regex
        self.output_keys = output_keys
        self.default_value = default_value
    
    def parse(self, text: str) -> Dict[str, Any]:
        """Parse the output text using the regex."""
        match = re.search(self.regex, text)
        if not match:
            if self.default_value is not None:
                return {key: self.default_value for key in self.output_keys}
            raise ValueError(f"Could not parse output with regex: {self.regex}")
        
        groups = match.groups()
        if len(groups) != len(self.output_keys):
            raise ValueError(f"Regex produced {len(groups)} groups, but expected {len(self.output_keys)}")
        
        return {key: value for key, value in zip(self.output_keys, groups)}
    
    def get_format_instructions(self) -> str:
        """Get format instructions for the output."""
        return f"Your answer should match the regex: {self.regex}"

4.3 输出解析器与提示模板的结合

输出解析器通常与提示模板结合使用,以确保模型生成的输出符合预期格式。以下是一个结合使用的示例:

# 定义一个结构化输出解析器
parser = StructuredOutputParser(
    schema={
        "answer": "The answer to the user's question",
        "confidence": "A number between 0 and 1 indicating the confidence in the answer"
    }
)

# 创建一个提示模板,包含输出格式说明
prompt_template = PromptTemplate(
    input_variables=["question"],
    template="""
    Answer the following question as best you can.
    {format_instructions}
    
    Question: {question}
    """,
    partial_variables={"format_instructions": parser.get_format_instructions()}
)

# 格式化提示
formatted_prompt = prompt_template.format(question="What is the capital of France?")

# 调用模型
model = OpenAI()
output = model(formatted_prompt)

# 解析输出
result = parser.parse(output)

print(result)  # 输出: {"answer": "Paris", "confidence": 0.9}

这个示例展示了如何将输出解析器与提示模板结合使用,以指导模型生成特定格式的输出,并将其解析为结构化数据。

五、链(Chain)的设计与实现

5.1 链的基本概念

链是LangChain中的核心组件之一,它允许将多个组件组合成一个工作流程。链可以包含提示模板、LLM、输出解析器等组件,并定义它们之间的交互方式。

链的基本接口定义如下:

class Chain(ABC, Serializable):
    """Base class for all chains."""
    
    @property
    @abstractmethod
    def input_keys(self) -> List[str]:
        """Return the input keys this chain expects."""
        pass
    
    @property
    @abstractmethod
    def output_keys(self) -> List[str]:
        """Return the output keys this chain produces."""
        pass
    
    @abstractmethod
    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the core logic of this chain."""
        pass
    
    def call(self, inputs: Dict[str, Any], return_only_outputs: bool = False) -> Dict[str, Any]:
        """Run the chain as text in and text out."""
        # 预处理输入
        inputs = self.prep_inputs(inputs)
        
        # 调用链的核心逻辑
        outputs = self._call(inputs)
        
        # 后处理输出
        return self.prep_outputs(inputs, outputs, return_only_outputs)
    
    def prep_inputs(self, inputs: Union[Dict[str, Any], Any]) -> Dict[str, Any]:
        """Prepare inputs before calling the chain."""
        # 处理输入格式
        if not isinstance(inputs, dict):
            return {self.input_keys[0]: inputs}
        else:
            return inputs
    
    def prep_outputs(
        self, inputs: Dict[str, Any], outputs: Dict[str, Any], return_only_outputs: bool = False
    ) -> Dict[str, Any]:
        """Prepare outputs after calling the chain."""
        # 处理输出格式
        if return_only_outputs:
            return outputs
        else:
            return {**inputs, **outputs}
    
    def run(self, *args: Any, **kwargs: Any) -> str:
        """Run the chain as text in and text out."""
        # 处理位置参数
        if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], dict):
            inputs = args[0]
        elif len(args) == 0:
            inputs = kwargs
        else:
            raise ValueError(
                "`run` supports either a single dictionary of "
                "arguments or keyword arguments. Got both."
            )
        
        # 调用链
        outputs = self(inputs)
        
        # 确保只有一个输出键
        if len(self.output_keys) != 1:
            raise ValueError(f"`run` not supported when there is not exactly "
                             f"one output key. Got {self.output_keys}.")
        
        return outputs[self.output_keys[0]]

5.2 简单链实现示例

下面是一个简单的链实现示例,它将提示模板、LLM和输出解析器组合在一起:

class SimpleSequentialChain(Chain):
    """A simple sequential chain that runs multiple chains in sequence."""
    
    chains: List[Chain]
    input_key: str = "input"
    output_key: str = "output"
    
    @property
    def input_keys(self) -> List[str]:
        """Return the input keys this chain expects."""
        return [self.input_key]
    
    @property
    def output_keys(self) -> List[str]:
        """Return the output keys this chain produces."""
        return [self.output_key]
    
    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the chains in sequence."""
        current_input = inputs
        
        for chain in self.chains:
            # 确保当前输入包含链所需的所有输入键
            for key in chain.input_keys:
                if key not in current_input:
                    raise ValueError(f"Missing input key: {key}")
            
            # 调用链
            current_output = chain(current_input)
            
            # 更新当前输入为链的输出
            current_input = current_output
        
        return current_input

5.3 常见链类型

LangChain提供了多种内置的链类型,以满足不同的需求:

5.3.1 LLMChain

LLMChain是最基本的链类型,它将提示模板和LLM组合在一起:

class LLMChain(Chain):
    """Chain to run queries against LLMs."""
    
    prompt: BasePromptTemplate
    llm: LLM
    output_key: str = "text"  #: :meta private:
    
    @property
    def input_keys(self) -> List[str]:
        """Will be whatever keys the prompt expects.
        
        :meta private:
        """
        return self.prompt.input_variables
    
    @property
    def output_keys(self) -> List[str]:
        """Will always return text key.
        
        :meta private:
        """
        return [self.output_key]
    
    def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
        """Format prompt with kwargs and pass to LLM."""
        prompt_value = self.prompt.format_prompt(**inputs)
        
        # Get the LLM to generate
        response = self.llm.generate_prompt([prompt_value])
        
        # Format the response
        text = self._process_response(response)
        
        return {self.output_key: text}
    
    def _process_response(self, response: LLMResult) -> str:
        """Process response from LLM."""
        return response.generations[0][0].text
5.3.2 SequentialChain

SequentialChain允许按顺序运行多个链,前一个链的输出作为后一个链的输入:

class SequentialChain(Chain):
    """A sequential chain that runs multiple chains in sequence."""
    
    chains: List[Chain]
    input_variables: List[str]
    output_variables: List[str]
    verbose: bool = False
    
    @property
    def input_keys(self) -> List[str]:
        """Return the input keys this chain expects."""
        return self.input_variables
    
    @property
    def output_keys(self) -> List[str]:
        """Return the output keys this chain produces."""
        return self.output_variables
    
    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the chains in sequence."""
        current_input = inputs.copy()
        
        for chain in self.chains:
            # 确保当前输入包含链所需的所有输入键
            for key in chain.input_keys:
                if key not in current_input:
                    raise ValueError(f"Missing input key: {key}")
            
            # 调用链
            if self.verbose:
                print(f"\n\nRunning chain: {chain.__class__.__name__}")
                print(f"Input: {current_input}")
            
            current_output = chain(current_input)
            
            if self.verbose:
                print(f"Output: {current_output}")
            
            # 更新当前输入为链的输出
            current_input.update(current_output)
        
        # 只返回指定的输出变量
        return {key: current_input[key] for key in self.output_variables}

六、记忆(Memory)组件实现

6.1 记忆的作用

在LangChain中,记忆组件用于在链的执行过程中保持状态和历史信息。这对于需要上下文感知的应用程序(如聊天机器人)尤为重要。

记忆组件的基本接口定义如下:

class BaseMemory(ABC):
    """Base interface for memory in chains."""
    
    @property
    @abstractmethod
    def memory_variables(self) -> List[str]:
        """Input keys this memory class will load dynamically."""
        pass
    
    @abstractmethod
    def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Return key-value pairs given the text input to the chain."""
        pass
    
    @abstractmethod
    def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
        """Save the context of this chain run to memory."""
        pass
    
    @abstractmethod
    def clear(self) -> None:
        """Clear memory contents."""
        pass

6.2 常见记忆实现

LangChain提供了多种记忆实现,以满足不同的需求:

6.2.1 简单聊天记忆
class ConversationBufferMemory(BaseMemory):
    """Buffer for storing conversation memory."""
    
    memory_key: str = "history"
    input_key: Optional[str] = None
    output_key: Optional[str] = None
    human_prefix: str = "Human"
    ai_prefix: str = "AI"
    chat_memory: BaseChatMemory = Field(default_factory=ChatMessageHistory)
    
    @property
    def memory_variables(self) -> List[str]:
        """Will always return list of memory variables.
        
        :meta private:
        """
        return [self.memory_key]
    
    def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
        """Return history buffer."""
        messages = self.chat_memory.messages
        if self.input_key is not None and self.input_key in inputs:
            # 如果提供了输入键,并且输入中包含该键,则将其添加到历史记录中
            human_message = HumanMessage(content=inputs[self.input_key])
            messages.append(human_message)
        
        history = self._get_buffer_string(messages)
        return {self.memory_key: history}
    
    def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
        """Save context from this conversation to buffer."""
        if self.input_key is None:
            input_str = list(inputs.values())[0]
        else:
            input_str = inputs[self.input_key]
        
        if self.output_key is None:
            output_str = list(outputs.values())[0]
        else:
            output_str = outputs[self.output_key]
        
        self.chat_memory.add_user_message(input_str)
        self.chat_memory.add_ai_message(output_str)
    
    def clear(self) -> None:
        """Clear memory contents."""
        self.chat_memory.clear()
    
    def _get_buffer_string(self, messages: List[BaseMessage]) -> str:
        """Get buffer string of messages."""
        string_messages = []
        for m in messages:
            if isinstance(m, HumanMessage):
                role = self.human_prefix
            elif isinstance(m, AIMessage):
                role = self.ai_prefix
            else:
                continue
            string_messages.append(f"{role}: {m.content}")
        return "\n".join(string_messages)
6.2.2 总结记忆
class ConversationSummaryMemory(BaseMemory):
    """Memory that summarizes previous messages and uses that as the context."""
    
    memory_key: str = "history"
    llm: LLM
    input_key: Optional[str] = None
    output_key: Optional[str] = None
    human_prefix: str = "Human"
    ai_prefix: str = "AI"
    chat_memory: BaseChatMemory = Field(default_factory=ChatMessageHistory)
    summary: str = ""
    
    @property
    def memory_variables(self) -> List[str]:
        """Will always return list of memory variables.
        
        :meta private:
        """
        return [self.memory_key]
    
    def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
        """Return history buffer."""
        return {self.memory_key: self.summary}
    
    def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
        """Save context from this conversation to buffer."""
        if self.input_key is None:
            input_str = list(inputs.values())[0]
        else:
            input_str = inputs[self.input_key]
        
        if self.output_key is None:
            output_str = list(outputs.values())[0]
        else:
            output_str = outputs[self.output_key]
        
        # 添加新的对话到聊天记忆
        self.chat_memory.add_user_message(input_str)
        self.chat_memory.add_ai_message(output_str)
        
        # 更新总结
        self._update_summary()
    
    def clear(self) -> None:
        """Clear memory contents."""
        self.chat_memory.clear()
        self.summary = ""
    
    def _update_summary(self) -> None:
        """Update the summary based on the current conversation."""
        messages = self.chat_memory.messages
        if not messages:
            return
        
        # 创建一个提示来总结对话
        prompt_template = """
        Summarize the following conversation:
        
        {conversation}
        
        Summary:
        """
        prompt = PromptTemplate(
            input_variables=["conversation"],
            template=prompt_template
        )
        
        # 格式化对话
        conversation_str = self._get_buffer_string(messages)
        
        # 生成总结
        chain = LLMChain(llm=self.llm, prompt=prompt)
        self.summary = chain.run(conversation=conversation_str)
    
    def _get_buffer_string(self, messages: List[BaseMessage]) -> str:
        """Get buffer string of messages."""
        string_messages = []
        for m in messages:
            if isinstance(m, HumanMessage):
                role = self.human_prefix
            elif isinstance(m, AIMessage):
                role = self.ai_prefix
            else:
                continue
            string_messages.append(f"{role}: {m.content}")
        return "\n".join(string_messages)

七、代理(Agent)系统实现

7.1 代理的基本概念

代理是LangChain中最复杂的组件之一,它允许模型自主决策并调用外部工具。代理系统能够根据输入动态选择合适的工具,并使用这些工具来解决问题。

代理的基本接口定义如下:

class Agent(ABC):
    """Base class for all agents."""
    
    @property
    @abstractmethod
    def input_keys(self) -> List[str]:
        """Return the input keys this agent expects."""
        pass
    
    @property
    @abstractmethod
    def output_keys(self) -> List[str]:
        """Return the output keys this agent produces."""
        pass
    
    @abstractmethod
    def _get_next_action(self, inputs: Dict[str, Any]) -> AgentAction:
        """Get the next action the agent should take."""
        pass
    
    @abstractmethod
    def _construct_scratchpad(
        self, intermediate_steps: List[Tuple[AgentAction, str]]
    ) -> str:
        """Construct the scratchpad that lets the agent continue its thought process."""
        pass
    
    @classmethod
    @abstractmethod
    def _get_default_output_parser(cls, **kwargs: Any) -> BaseOutputParser:
        """Get default output parser for this agent."""
        pass
    
    @classmethod
    @abstractmethod
    def create_prompt(cls, tools: List[BaseTool], **kwargs: Any) -> BasePromptTemplate:
        """Create a prompt for this agent."""
        pass
    
    @classmethod
    @abstractmethod
    def _validate_tools(cls, tools: List[BaseTool]) -> None:
        """Validate that appropriate tools are passed in."""
        pass
    
    def plan(
        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.
        
        Args:
            intermediate_steps: Steps the agent has taken to date,
                along with observations
            **kwargs: User inputs.
        
        Returns:
            Action specifying what tool to use.
        """
        # 构建输入字典
        full_inputs = kwargs.copy()
        full_inputs["intermediate_steps"] = intermediate_steps
        
        # 获取下一步行动
        action = self._get_next_action(full_inputs)
        
        # 如果行动是结束,则返回AgentFinish
        if isinstance(action, AgentFinish):
            return action
        
        # 否则返回AgentAction
        return action

7.2 工具接口

代理系统使用工具来执行特定的任务。工具的基本接口定义如下:

class BaseTool(ABC):
    """Base class for all tools."""
    
    name: str
    description: str
    verbose: bool = False
    
    @abstractmethod
    def _run(self, *args: Any, **kwargs: Any) -> str:
        """Use the tool."""
        pass
    
    async def _arun(self, *args: Any, **kwargs: Any) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("Tool does not support async")
    
    def run(self, *args: Any, **kwargs: Any) -> str:
        """Run the tool."""
        if self.verbose:
            print(f"Tool {self.name} called with args: {args}, kwargs: {kwargs}")
        
        # 执行工具
        output = self._run(*args, **kwargs)
        
        if self.verbose:
            print(f"Tool {self.name} returned: {output}")
        
        return output
    
    async def arun(self, *args: Any, **kwargs: Any) -> str:
        """Run the tool asynchronously."""
        if self.verbose:
            print(f"Tool {self.name} called with args: {args}, kwargs: {kwargs}")
        
        # 执行工具
        output = await self._arun(*args, **kwargs)
        
        if self.verbose:
            print(f"Tool {self.name} returned: {output}")
        
        return output

7.3 代理实现示例

下面是一个简单的代理实现示例,它使用ReAct框架来决定何时调用工具:

class ReActAgent(Agent):
    """Agent that uses ReAct framework to decide when to use tools."""
    
    llm_chain: LLMChain
    allowed_tools: List[str]
    output_parser: BaseOutputParser
    
    @property
    def input_keys(self) -> List[str]:
        """Return the input keys this agent expects."""
        return ["input"]
    
    @property
    def output_keys(self) -> List[str]:
        """Return the output keys this agent produces."""
        return ["output"]
    
    def _get_next_action(self, inputs: Dict[str, Any]) -> AgentAction:
        """Get the next action the agent should take."""
        # 构建思考过程
        thoughts = self._construct_scratchpad(inputs["intermediate_steps"])
        
        # 添加思考过程到输入
        full_inputs = {**inputs, "agent_scratchpad": thoughts}
        
        # 调用LLM获取下一步行动
        output = self.llm_chain.predict(**full_inputs)
        
        # 解析输出
        return self.output_parser.parse(output)
    
    def _construct_scratchpad(
        self, intermediate_steps: List[Tuple[AgentAction, str]]
    ) -> str:
        """Construct the scratchpad that lets the agent continue its thought process."""
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += f"Action: {action.tool}\nAction Input: {action.tool_input}\nObservation: {observation}\n"
        return thoughts
    
    @classmethod
    def _get_default_output_parser(cls, **kwargs: Any) -> BaseOutputParser:
        """Get default output parser for this agent."""
        return ReActOutputParser()
    
    @classmethod
    def create_prompt(cls, tools: List[BaseTool], **kwargs: Any) -> BasePromptTemplate:
        """Create a prompt for this agent."""
        tool_descriptions = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
        tool_names = ", ".join([tool.name for tool in tools])
        
        template = f"""
        Answer the following questions as best you can. You have access to the following tools:
        
        {tool_descriptions}
        
        Use the following format:
        
        Question: the input question you must answer
        Thought: you should always think about what to do
        Action: the name of the tool to use, should be one of [{tool_names}]
        Action Input: the input to the tool
        Observation: the result of the tool
        ... (this Thought/Action/Action Input/Observation can repeat N times)
        Thought: I now know the final answer
        Final Answer: the final answer to the original question
        
        Begin!
        
        Question: {{input}}
        Thought: {{agent_scratchpad}}
        """
        
        return PromptTemplate(
            input_variables=["input", "agent_scratchpad"],
            template=template
        )
    
    @classmethod
    def _validate_tools(cls, tools: List[BaseTool]) -> None:
        """Validate that appropriate tools are passed in."""
        if not tools:
            raise ValueError("At least one tool must be provided.")

八、异步API实现

8.1 异步编程模型

LangChain支持异步API,这对于需要处理大量并发请求的应用程序非常有用。异步API使用Python的async/await语法,允许非阻塞地执行长时间运行的操作。

LangChain的异步API主要基于以下几个原则:

  1. 一致的接口:异步API与同步API保持一致的接口设计,方便开发者在不同场景下切换使用。

LangChain的异步API主要基于以下几个原则:

  1. 一致的接口:异步API与同步API保持一致的接口设计,方便开发者在不同场景下切换使用。

  2. 非阻塞操作:所有可能阻塞的操作都提供异步版本,确保在处理多个请求时不会阻塞整个应用程序。

  3. 并行处理:支持并行执行多个请求,提高整体吞吐量。

8.2 异步LLM接口

LLM基类提供了异步方法的定义,具体实现由各个子类完成:

class LLM(ABC):
    """Base class for all language models."""
    
    # 同步方法
    @abstractmethod
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        pass
    
    # 异步方法
    @abstractmethod
    async def _acall(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Run the LLM on the given prompt asynchronously."""
        pass
    
    # 同步批量生成
    def generate(self, prompts: List[str], stop: Optional[List[str]] = None) -> LLMResult:
        results = []
        for prompt in prompts:
            text = self._call(prompt, stop=stop)
            results.append(Generation(text=text))
        return LLMResult(generations=[results])
    
    # 异步批量生成
    async def agenerate(self, prompts: List[str], stop: Optional[List[str]] = None) -> LLMResult:
        """Generate text from a list of prompts asynchronously."""
        results = []
        for prompt in prompts:
            text = await self._acall(prompt, stop=stop)
            results.append(Generation(text=text))
        return LLMResult(generations=[results])
    
    # 其他同步和异步方法...

以OpenAI LLM实现为例,看一下异步方法的具体实现:

class OpenAI(LLM):
    """Wrapper around OpenAI large language models."""
    
    # 其他属性和方法...
    
    async def _acall(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call the OpenAI API asynchronously."""
        try:
            # 使用aiohttp进行异步请求
            import aiohttp
            
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {self.openai_api_key}"
            }
            
            payload = {
                "model": self.model_name,
                "prompt": prompt,
                "temperature": self.temperature,
                "max_tokens": self.max_tokens,
                "top_p": self.top_p,
                "frequency_penalty": self.frequency_penalty,
                "presence_penalty": self.presence_penalty,
                "n": self.n,
                "stop": stop,
            }
            
            async with aiohttp.ClientSession() as session:
                async with session.post(
                    "https://api.openai.com/v1/completions",
                    headers=headers,
                    json=payload,
                    timeout=self.request_timeout
                ) as response:
                    response_data = await response.json()
                    if response.status != 200:
                        raise ValueError(f"Error calling OpenAI API: {response_data}")
                    return response_data["choices"][0]["text"].strip()
        except Exception as e:
            raise ValueError(f"Error calling OpenAI API: {e}") from e

8.3 异步链实现

链也提供了异步版本的实现,允许异步执行整个工作流程:

class Chain(ABC, Serializable):
    """Base class for all chains."""
    
    # 同步调用
    def call(self, inputs: Dict[str, Any], return_only_outputs: bool = False) -> Dict[str, Any]:
        inputs = self.prep_inputs(inputs)
        outputs = self._call(inputs)
        return self.prep_outputs(inputs, outputs, return_only_outputs)
    
    # 异步调用
    async def acall(self, inputs: Dict[str, Any], return_only_outputs: bool = False) -> Dict[str, Any]:
        """Run the chain asynchronously."""
        inputs = self.prep_inputs(inputs)
        outputs = await self._acall(inputs)
        return self.prep_outputs(inputs, outputs, return_only_outputs)
    
    @abstractmethod
    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the core logic of this chain synchronously."""
        pass
    
    @abstractmethod
    async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the core logic of this chain asynchronously."""
        pass
    
    # 其他同步和异步方法...

以LLMChain为例,看一下异步方法的具体实现:

class LLMChain(Chain):
    """Chain to run queries against LLMs."""
    
    # 其他属性和方法...
    
    async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
        """Format prompt with kwargs and pass to LLM asynchronously."""
        prompt_value = self.prompt.format_prompt(**inputs)
        
        # 异步调用LLM
        response = await self.llm.agenerate_prompt([prompt_value])
        
        # 处理响应
        text = self._process_response(response)
        
        return {self.output_key: text}

8.4 并行处理多个请求

LangChain提供了方便的工具来并行处理多个请求,进一步提高性能:

async def aload_qa_with_sources_chain(
    llm: LLM,
    chain_type: str = "stuff",
    verbose: Optional[bool] = None,
    **kwargs: Any
) -> BaseChain:
    """Load question answering chain with sources."""
    # 根据链类型选择合适的链
    if chain_type == "stuff":
        return StuffDocumentsChain(
            llm_chain=LLMChain(llm=llm, prompt=load_qa_with_sources_prompt()),
            document_variable_name="summaries",
            verbose=verbose,
        )
    elif chain_type == "map_reduce":
        return MapReduceDocumentsChain(
            llm_chain=LLMChain(llm=llm, prompt=load_qa_with_sources_prompt()),
            combine_document_chain=LLMChain(
                llm=llm, prompt=load_qa_combine_prompt()
            ),
            document_variable_name="summaries",
            verbose=verbose,
        )
    elif chain_type == "refine":
        return RefineDocumentsChain(
            llm_chain=LLMChain(llm=llm, prompt=load_qa_prompt()),
            refine_llm_chain=LLMChain(
                llm=llm, prompt=load_qa_refine_prompt()
            ),
            document_variable_name="document",
            initial_response_name="existing_answer",
            verbose=verbose,
        )
    else:
        raise ValueError(f"Invalid chain type: {chain_type}")

async def aget_qa_with_sources_answers(
    chain: BaseChain,
    questions: List[str],
    documents: List[Document],
    batch_size: int = 2,
    **kwargs: Any
) -> List[str]:
    """Get answers to a list of questions with sources asynchronously."""
    # 并行处理多个问题
    async def process_question(question: str) -> str:
        inputs = {"question": question, "documents": documents}
        result = await chain.acall(inputs, **kwargs)
        return result["output_text"]
    
    # 使用asyncio.gather并行处理多个问题
    return await asyncio.gather(*[process_question(q) for q in questions])

九、流式API实现

9.1 流式响应的基本概念

流式响应允许模型在生成内容的同时逐步返回结果,而不是等待整个响应完成后才返回。这对于需要实时显示结果的应用程序(如聊天界面)非常有用。

LangChain提供了对流式响应的支持,主要通过以下几个组件实现:

  1. BaseCallbackHandler:回调处理器基类,定义了处理流式响应的接口。

  2. StreamingStdOutCallbackHandler:标准输出流式回调处理器,将流式响应输出到控制台。

  3. LLM:LLM基类提供了流式响应的接口定义。

9.2 流式回调处理器

回调处理器基类定义了处理流式响应的接口:

class BaseCallbackHandler(ABC):
    """Base callback handler that can be used to handle callbacks from langchain."""
    
    @abstractmethod
    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> Any:
        """Run when LLM starts running."""
        pass
    
    @abstractmethod
    def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:
        """Run on new LLM token. Only available when streaming is enabled."""
        pass
    
    @abstractmethod
    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
        """Run when LLM ends running."""
        pass
    
    @abstractmethod
    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> Any:
        """Run when LLM errors."""
        pass
    
    # 其他回调方法...

标准输出流式回调处理器实现了这些接口,将流式响应输出到控制台:

class StreamingStdOutCallbackHandler(BaseCallbackHandler):
    """Callback handler for streaming LLM responses to stdout."""
    
    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass
    
    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Print the token."""
        print(token, end="", flush=True)
    
    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Do nothing."""
        pass
    
    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

9.3 流式LLM接口

LLM基类提供了流式响应的接口定义:

class LLM(ABC):
    """Base class for all language models."""
    
    # 同步流式方法
    def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Iterator[str]:
        """Stream the response one token at a time."""
        # 默认实现,具体模型可能需要重写
        response = self._call(prompt, stop=stop)
        for token in response.split():
            yield token
    
    # 异步流式方法
    async def astream(self, prompt: str, stop: Optional[List[str]] = None) -> AsyncIterator[str]:
        """Stream the response one token at a time asynchronously."""
        # 默认实现,具体模型可能需要重写
        response = await self._acall(prompt, stop=stop)
        for token in response.split():
            yield token
    
    # 其他方法...

以OpenAI LLM实现为例,看一下流式方法的具体实现:

class OpenAI(LLM):
    """Wrapper around OpenAI large language models."""
    
    # 其他属性和方法...
    
    def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Iterator[str]:
        """Call the OpenAI API with streaming and yield tokens."""
        try:
            import openai
            
            response = openai.Completion.create(
                model=self.model_name,
                prompt=prompt,
                temperature=self.temperature,
                max_tokens=self.max_tokens,
                top_p=self.top_p,
                frequency_penalty=self.frequency_penalty,
                presence_penalty=self.presence_penalty,
                n=self.n,
                stop=stop,
                stream=True,
            )
            
            for chunk in response:
                if "choices" in chunk and len(chunk["choices"]) > 0:
                    if "text" in chunk["choices"][0]:
                        yield chunk["choices"][0]["text"]
        except Exception as e:
            raise ValueError(f"Error calling OpenAI API: {e}") from e
    
    async def astream(self, prompt: str, stop: Optional[List[str]] = None) -> AsyncIterator[str]:
        """Call the OpenAI API with streaming asynchronously and yield tokens."""
        try:
            import aiohttp
            
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {self.openai_api_key}"
            }
            
            payload = {
                "model": self.model_name,
                "prompt": prompt,
                "temperature": self.temperature,
                "max_tokens": self.max_tokens,
                "top_p": self.top_p,
                "frequency_penalty": self.frequency_penalty,
                "presence_penalty": self.presence_penalty,
                "n": self.n,
                "stop": stop,
                "stream": True,
            }
            
            async with aiohttp.ClientSession() as session:
                async with session.post(
                    "https://api.openai.com/v1/completions",
                    headers=headers,
                    json=payload,
                    timeout=self.request_timeout
                ) as response:
                    async for line in response.content:
                        line = line.decode("utf-8").strip()
                        if line.startswith("data: ") and not line.startswith("data: [DONE]"):
                            data = json.loads(line[6:])
                            if "choices" in data and len(data["choices"]) > 0:
                                if "text" in data["choices"][0]:
                                    yield data["choices"][0]["text"]
        except Exception as e:
            raise ValueError(f"Error calling OpenAI API: {e}") from e

9.4 使用流式API

下面是一个使用流式API的简单示例:

# 创建一个OpenAI实例
llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()])

# 使用流式API生成响应
prompt = "Once upon a time"
for token in llm.stream(prompt):
    # 处理每个生成的token
    pass

# 异步使用流式API
async def generate_async():
    async for token in llm.astream(prompt):
        # 处理每个生成的token
        pass

# 运行异步生成
asyncio.run(generate_async())

十、API集成与扩展

10.1 与其他API的集成

LangChain可以轻松地与其他API集成,扩展其功能。例如,与向量数据库、搜索引擎等集成:

# 与向量数据库集成
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings

# 创建向量数据库
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(["Hello world", "Goodbye world"], embeddings)

# 创建检索链
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI

llm = OpenAI()
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=vectorstore.as_retriever()
)

# 使用检索链回答问题
result = qa_chain.run("What did you say?")
print(result)

# 与搜索引擎集成
from langchain.utilities import SerpAPIWrapper
from langchain.agents import initialize_agent, Tool

# 创建搜索引擎工具
search = SerpAPIWrapper()
tools = [
    Tool(
        name="Search",
        func=search.run,
        description="Useful for finding information on the internet"
    )
]

# 创建代理
agent = initialize_agent(
    tools,
    llm,
    agent="zero-shot-react-description",
    verbose=True
)

# 使用代理回答问题
result = agent.run("What is the capital of France?")
print(result)

10.2 自定义组件开发

LangChain的设计非常灵活,允许开发者自定义各种组件。例如,开发自定义LLM、提示模板、输出解析器等:

# 开发自定义LLM
class CustomLLM(LLM):
    """Custom LLM wrapper."""
    
    api_endpoint: str
    api_key: str
    
    def __init__(self, api_endpoint: str, api_key: str, **kwargs: Any):
        """Initialize the custom LLM."""
        super().__init__(**kwargs)
        self.api_endpoint = api_endpoint
        self.api_key = api_key
    
    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "custom"
    
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call the custom LLM API."""
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}"
        }
        
        payload = {
            "prompt": prompt,
            "max_tokens": 256,
            "temperature": 0.7,
            "stop": stop
        }
        
        response = requests.post(self.api_endpoint, headers=headers, json=payload)
        if response.status_code != 200:
            raise ValueError(f"Error calling custom LLM API: {response.text}")
        
        return response.json()["text"]

# 开发自定义提示模板
class CustomPromptTemplate(BasePromptTemplate):
    """Custom prompt template."""
    
    template: str
    input_variables: List[str]
    
    def format(self, **kwargs: Any) -> str:
        """Format the prompt with the given parameters."""
        # 自定义格式化逻辑
        return self.template.format(**kwargs)
    
    def format_prompt(self, **kwargs: Any) -> PromptValue:
        """Format the prompt with the given parameters and return a PromptValue."""
        text = self.format(**kwargs)
        return StringPromptValue(text=text)
    
    @property
    def _get_prompt_dict(self) -> Dict:
        """Return a dictionary of the prompt."""
        return {
            "input_variables": self.input_variables,
            "template": self.template
        }

# 开发自定义输出解析器
class CustomOutputParser(BaseOutputParser):
    """Custom output parser."""
    
    def parse(self, text: str) -> Any:
        """Parse the output text and return a structured result."""
        # 自定义解析逻辑
        return text.split("\n")
    
    def get_format_instructions(self) -> str:
        """Get format instructions for the output."""
        return "Your answer should be a list of lines."

10.3 插件系统

LangChain的插件系统允许开发者扩展其功能,而不需要修改核心代码。插件可以是自定义工具、回调处理器、内存实现等:

# 开发自定义工具插件
class CustomTool(BaseTool):
    """Custom tool for performing a specific task."""
    
    name = "custom_tool"
    description = "Useful for performing a specific task"
    
    def _run(self, input: str) -> str:
        """Run the tool."""
        # 自定义工具逻辑
        return f"Processed: {input}"
    
    async def _arun(self, input: str) -> str:
        """Run the tool asynchronously."""
        # 自定义异步工具逻辑
        return f"Processed: {input}"

# 开发自定义回调处理器插件
class CustomCallbackHandler(BaseCallbackHandler):
    """Custom callback handler for tracking LLM usage."""
    
    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Log the start of LLM execution."""
        print(f"LLM started with prompts: {prompts}")
    
    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Log each new token generated by the LLM."""
        print(f"New token: {token}")
    
    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Log the end of LLM execution."""
        print(f"LLM finished with response: {response}")
    
    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Log any errors that occur during LLM execution."""
        print(f"LLM error: {error}")

# 使用插件
llm = OpenAI(callbacks=[CustomCallbackHandler()])
tools = [CustomTool()]

agent = initialize_agent(
    tools,
    llm,
    agent="zero-shot-react-description",
    verbose=True
)

result = agent.run("Perform a custom task")
print(result)

十一、错误处理与调试

11.1 常见错误类型

在使用LangChain的过程中,可能会遇到各种错误。以下是一些常见的错误类型:

  1. API连接错误:与外部API(如OpenAI、Hugging Face等)的连接失败。

  2. 验证错误:输入参数不符合要求,如缺少必要的API密钥。

  3. 解析错误:输出解析器无法正确解析模型的输出。

  4. 内存错误:内存组件无法正确保存或加载上下文。

  5. 代理错误:代理系统无法正确选择或使用工具。

11.2 错误处理机制

LangChain提供了完善的错误处理机制,主要通过以下方式实现:

  1. 异常类:LangChain定义了一系列异常类,用于表示不同类型的错误。

  2. 错误捕获:在关键位置捕获可能的异常,并提供有意义的错误信息。

  3. 重试机制:对于临时性的错误(如网络波动),提供重试机制。

以下是LangChain中异常类的定义:

class LangChainException(Exception):
    """Base exception class for LangChain errors."""
    
    def __init__(self, message: str, *args: Any, **kwargs: Any):
        """Initialize the exception."""
        super().__init__(message, *args, **kwargs)
        self.message = message

class APIConnectionError(LangChainException):
    """Exception for errors related to API connections."""
    
    def __init__(self, message: str, status_code: Optional[int] = None, *args: Any, **kwargs: Any):
        """Initialize the API connection error."""
        super().__init__(message, *args, **kwargs)
        self.status_code = status_code

class ValidationError(LangChainException):
    """Exception for validation errors."""
    
    def __init__(self, message: str, errors: Optional[List[Any]] = None, *args: Any, **kwargs: Any):
        """Initialize the validation error."""
        super().__init__(message, *args, **kwargs)
        self.errors = errors

class ParserError(LangChainException):
    """Exception for errors related to output parsing."""
    
    def __init__(self, message: str, output: Optional[str] = None, *args: Any, **kwargs: Any):
        """Initialize the parser error."""
        super().__init__(message, *args, **kwargs)
        self.output = output

class MemoryError(LangChainException):
    """Exception for errors related to memory."""
    
    def __init__(self, message: str, *args: Any, **kwargs: Any):
        """Initialize the memory error."""
        super().__init__(message, *args, **kwargs)

class AgentError(LangChainException):
    """Exception for errors related to agents."""
    
    def __init__(self, message: str, action: Optional[AgentAction] = None, *args: Any, **kwargs: Any):
        """Initialize the agent error."""
        super().__init__(message, *args, **kwargs)
        self.action = action

11.3 调试工具与技巧

在开发和调试使用LangChain的应用程序时,可以使用以下工具和技巧:

  1. 日志记录:启用详细的日志记录,查看API调用、中间结果等信息。

  2. 回调处理器:使用自定义回调处理器跟踪链的执行过程。

  3. 调试模式:在开发环境中启用调试模式,获取更详细的错误信息。

  4. 单元测试:编写单元测试,确保各个组件正常工作。

以下是一个使用自定义回调处理器进行调试的示例:

class DebugCallbackHandler(BaseCallbackHandler):
    """Callback handler for debugging LangChain applications."""
    
    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Log the start of LLM execution."""
        print(f"\n\n=== LLM Start ===")
        print(f"Model: {serialized.get('name')}")
        print(f"Prompts: {prompts}")
    
    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Log each new token generated by the LLM."""
        print(f"Token: {token}")
    
    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Log the end of LLM execution."""
        print(f"=== LLM End ===")
        print(f"Response: {response}")
    
    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Log the start of chain execution."""
        print(f"\n\n=== Chain Start ===")
        print(f"Chain: {serialized.get('name')}")
        print(f"Inputs: {inputs}")
    
    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Log the end of chain execution."""
        print(f"=== Chain End ===")
        print(f"Outputs: {outputs}")
    
    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Log the start of tool execution."""
        print(f"\n\n=== Tool Start ===")
        print(f"Tool: {serialized.get('name')}")
        print(f"Input: {input_str}")
    
    def on_tool_end(self, output: str, **kwargs: Any) -> None:
        """Log the end of tool execution."""
        print(f"=== Tool End ===")
        print(f"Output: {output}")

# 使用调试回调处理器
llm = OpenAI(callbacks=[DebugCallbackHandler()])
tools = [
    Tool(
        name="Search",
        func=SerpAPIWrapper().run,
        description="Useful for finding information on the internet"
    )
]

agent = initialize_agent(
    tools,
    llm,
    agent="zero-shot-react-description",
    verbose=True
)

result = agent.run("What is the capital of France?")
print(result)

十二、性能优化与最佳实践

12.1 性能优化策略

在使用LangChain开发应用程序时,可以采用以下性能优化策略:

  1. 批量处理:尽量批量处理请求,减少API调用次数。

  2. 缓存机制:使用缓存存储经常使用的结果,避免重复计算。

  3. 异步处理:对于需要处理大量并发请求的场景,使用异步API。

  4. 模型选择:根据具体任务选择合适的模型,避免使用过大的模型。

  5. 流式响应:对于长文本生成,使用流式响应提高用户体验。

12.2 缓存机制实现

LangChain提供了缓存机制,可以缓存LLM的响应,避免重复计算:

# 启用简单的内存缓存
from langchain.cache import InMemoryCache
import langchain

langchain.llm_cache = InMemoryCache()

# 使用缓存的LLM
llm = OpenAI()

# 第一次调用会执行实际的API请求
response1 = llm("What is the capital of France?")

# 第二次调用会从缓存中获取结果,不会执行实际的API请求
response2 = llm("What is the capital of France?")

# 使用Redis缓存
from langchain.cache import RedisCache
import redis

# 连接到Redis服务器
r = redis.Redis(host="localhost", port=6379, db=0)

# 配置Redis缓存
langchain.llm_cache = RedisCache(redis_client=r)

# 使用Redis缓存的LLM
llm = OpenAI()

# 第一次调用会执行实际的API请求
response1 = llm("What is the capital of France?")

# 第二次调用会从Redis缓存中获取结果
response2 = llm("What is the capital of France?")

12.3 最佳实践

在使用LangChain开发应用程序时,建议遵循以下最佳实践:

  1. 模块化设计:将应用程序分解为多个小的、可复用的组件。

  2. 配置管理:使用配置文件或环境变量管理API密钥、模型参数等配置信息。

  3. 错误处理:实现完善的错误处理机制,处理各种可能的异常情况。

  4. 测试覆盖:编写单元测试和集成测试,确保代码质量。

  5. 文档编写:为自定义组件和应用程序编写清晰的文档,便于维护和协作。

以下是一个遵循最佳实践的LangChain应用程序示例:

# config.py - 配置管理
import os

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
SERPAPI_API_KEY = os.environ.get("SERPAPI_API_KEY")
REDIS_HOST = os.environ.get("REDIS_HOST", "localhost")
REDIS_PORT = int(os.environ.get("REDIS_PORT", 6379))

# utils.py - 工具函数
from langchain.cache import RedisCache
import redis

def get_llm_cache():
    """获取LLM缓存实例"""
    r = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=0)
    return RedisCache(redis_client=r)

# agents.py - 代理定义
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from langchain.utilities import SerpAPIWrapper
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings

def create_search_agent():
    """创建搜索代理"""
    # 配置LLM,启用缓存
    llm = OpenAI(
        openai_api_key=OPENAI_API_KEY,
        cache=get_llm_cache()
    )
    
    # 配置工具
    search = SerpAPIWrapper(serpapi_api_key=SERPAPI_API_KEY)
    tools = [
        Tool(
            name="Search",
            func=search.run,
            description="Useful for finding information on the internet"
        )
    ]
    
    # 初始化代理
    agent = initialize_agent(
        tools,
        llm,
        agent="zero-shot-react-description",
        verbose=True
    )
    
    return agent

def create_qa_agent(documents):
    """创建问答代理"""
    # 配置LLM,启用缓存
    llm = OpenAI(
        openai_api_key=OPENAI_API_KEY,
        cache=get_llm_cache()
    )
    
    # 创建向量数据库
    embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
    vectorstore = FAISS.from_texts([doc.page_content for doc in documents], embeddings)
    
    # 创建检索链
    retriever = vectorstore.as_retriever()
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever
    )
    
    # 配置工具
    tools = [
        Tool(
            name="QA",
            func=qa_chain.run,
            description="Useful for answering questions based on documents"
        )
    ]
    
    # 初始化代理
    agent = initialize_agent(
        tools,
        llm,
        agent="zero-shot-react-description",
        verbose=True
    )
    
    return agent

# app.py - 应用程序入口
from agents import create_search_agent, create_qa_agent
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter

def main():
    try:
        # 加载文档
        loader = TextLoader("documents/knowledge.txt")
        documents = loader.load()
        
        # 分割文档
        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        texts = text_splitter.split_documents(documents)
        
        # 创建代理
        search_agent = create_search_agent()
        qa_agent = create_qa_agent(texts)
        
        # 使用代理回答问题
        question = "What is the capital of France?"
        print(f"Question: {question}")
        
        print("\nSearch Agent Answer:")
        search_answer = search_agent.run(question)
        print(search_answer)
        
        print("\nQA Agent Answer:")
        qa_answer = qa_agent.run(question)
        print(qa_answer)
        
    except Exception as e:
        print(f"Error: {e}")

if __name__ == "__main__":
    main()

十三、安全与隐私考虑

13.1 数据安全

在使用LangChain开发应用程序时,需要特别注意数据安全:

  1. API密钥管理:妥善管理API密钥,避免将其硬编码在代码中或上传到公共仓库。

  2. 数据传输安全:确保与外部API的通信使用加密连接(如HTTPS)。

  3. 数据存储安全:对于敏感数据,确保在存储时进行加密。

  4. 访问控制:限制对API密钥和敏感数据的访问权限,仅授权必要的人员访问。

13.2 隐私保护

在处理用户数据时,需要遵循隐私保护原则:

  1. 最小数据收集:仅收集必要的用户数据,避免收集过多的个人信息。

  2. 数据匿名化:在可能的情况下,对用户数据进行匿名化处理。

  3. 用户同意:在收集和处理用户数据之前,获得用户的明确同意。

  4. 合规性:确保应用程序符合相关的隐私法规(如GDPR、CCPA等)。

13.3 安全最佳实践

以下是一些安全最佳实践,可以帮助保护LangChain应用程序:

  1. 环境变量:使用环境