下面是一个完整的基于BERT的对话意图识别系统代码,用于检测"线下交易"嫌疑。包含数据生成、模型训练和评估全流程:
import torch
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from transformers import get_linear_schedule_with_warmup
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
# 设置随机种子确保可复现
RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 1. 生成模拟对话数据
def generate_dialogue_data(num_samples=500):
"""生成包含正常对话和线下交易嫌疑的对话数据"""
data = []
labels = []
# 正常对话模板
normal_templates = [
("这个商品还有货吗?", "有货的,可以直接下单"),
("质量怎么样?", "我们是正品保证,支持7天无理由退货"),
("什么时候发货?", "24小时内发货"),
("能便宜点吗?", "可以给您包邮"),
("有优惠券吗?", "关注店铺领取5元优惠券"),
("怎么支付?", "平台支持支付宝、微信支付"),
("买多了有折扣吗?", "满100减10"),
("退换货流程是怎样的?", "申请售后我们会及时处理"),
("是正品吗?", "官方授权,假一赔十"),
("快递发什么?", "默认发顺丰快递")
]
# 线下交易嫌疑对话模板
suspicious_templates = [
("平台手续费太高了", "加我微信聊:XXX"),
("可以线下交易吗?", "现金交易更划算"),
("我们私下交易吧", "转我支付宝避免平台抽成"),
("加个微信详细聊?", "我的微信是123456"),
("平台监管太严", "我们直接银行转账"),
("绕过平台交易", "给你我的手机号138XXXX"),
("不走平台可以优惠", "现金支付给你9折"),
("加QQ发你位置", "QQ号:987654"),
("当面交易怎么样?", "明天下午3点地铁站见"),
("平台记录不方便", "我们短信联系")
]
# 生成正常对话
for _ in range(num_samples // 2):
template = normal_templates[np.random.choice(len(normal_templates))]
dialogue = f"用户A: {template[0]}\n用户B: {template[1]}"
data.append(dialogue)
labels.append(0) # 正常对话标签为0
# 生成可疑对话
for _ in range(num_samples // 2):
template = suspicious_templates[np.random.choice(len(suspicious_templates))]
dialogue = f"用户A: {template[0]}\n用户B: {template[1]}"
data.append(dialogue)
labels.append(1) # 可疑对话标签为1
return pd.DataFrame({"dialogue": data, "label": labels})
# 生成500条对话数据
df = generate_dialogue_data(500)
print("数据分布:\n", df["label"].value_counts())
print("\n示例数据:")
print(df.head())
# 2. 数据预处理
# 使用BERT的分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
# 数据集类
class DialogueDataset(Dataset):
def __init__(self, dialogues, labels, tokenizer, max_len):
self.dialogues = dialogues
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.dialogues)
def __getitem__(self, idx):
dialogue = str(self.dialogues[idx])
label = self.labels[idx]
encoding = tokenizer.encode_plus(
dialogue,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
return {
'dialogue_text': dialogue,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'labels': torch.tensor(label, dtype=torch.long)
}
# 数据分割
train_df, test_df = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED)
train_df, val_df = train_test_split(train_df, test_size=0.1, random_state=RANDOM_SEED)
# 参数设置
MAX_LEN = 64
BATCH_SIZE = 16
# 创建数据加载器
def create_data_loader(df, tokenizer, max_len, batch_size):
ds = DialogueDataset(
dialogues=df.dialogue.to_numpy(),
labels=df.label.to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
return DataLoader(ds, batch_size=batch_size, shuffle=True, num_workers=0)
train_data_loader = create_data_loader(train_df, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(val_df, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(test_df, tokenizer, MAX_LEN, BATCH_SIZE)
# 3. 模型构建
model = BertForSequenceClassification.from_pretrained(
'bert-base-chinese',
num_labels=2
)
model = model.to(device)
# 4. 训练设置
EPOCHS = 5
optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=total_steps
)
loss_fn = torch.nn.CrossEntropyLoss().to(device)
# 5. 训练函数
def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler):
model = model.train()
losses = []
correct_predictions = 0
for batch in data_loader:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
loss = outputs.loss
losses.append(loss.item())
_, preds = torch.max(outputs.logits, dim=1)
correct_predictions += torch.sum(preds == labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
accuracy = correct_predictions.double() / len(data_loader.dataset)
avg_loss = np.mean(losses)
return avg_loss, accuracy
# 6. 评估函数
def eval_model(model, data_loader, device):
model = model.eval()
losses = []
correct_predictions = 0
all_preds = []
all_labels = []
with torch.no_grad():
for batch in data_loader:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
loss = outputs.loss
losses.append(loss.item())
_, preds = torch.max(outputs.logits, dim=1)
correct_predictions += torch.sum(preds == labels)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
accuracy = correct_predictions.double() / len(data_loader.dataset)
avg_loss = np.mean(losses)
return avg_loss, accuracy, all_preds, all_labels
# 7. 训练循环
history = {
'train_loss': [], 'train_acc': [],
'val_loss': [], 'val_acc': []
}
for epoch in range(EPOCHS):
print(f'Epoch {epoch + 1}/{EPOCHS}')
print('-' * 10)
train_loss, train_acc = train_epoch(
model, train_data_loader, loss_fn, optimizer, device, scheduler
)
print(f'Train loss: {train_loss:.4f}, accuracy: {train_acc:.4f}')
val_loss, val_acc, _, _ = eval_model(model, val_data_loader, device)
print(f'Val loss: {val_loss:.4f}, accuracy: {val_acc:.4f}')
print()
history['train_loss'].append(train_loss)
history['train_acc'].append(train_acc.cpu())
history['val_loss'].append(val_loss)
history['val_acc'].append(val_acc.cpu())
# 8. 评估模型
test_loss, test_acc, y_pred, y_true = eval_model(model, test_data_loader, device)
print(f'Test accuracy: {test_acc:.4f}')
print(classification_report(y_true, y_pred, target_names=['正常', '可疑']))
# 混淆矩阵
def plot_confusion_matrix(y_true, y_pred):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(8,6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['正常', '可疑'],
yticklabels=['正常', '可疑'])
plt.xlabel('预测标签')
plt.ylabel('真实标签')
plt.title('混淆矩阵')
plt.show()
plot_confusion_matrix(y_true, y_pred)
# 9. 预测函数
def predict_intent(dialogue, model, tokenizer, device, max_len=64):
model.eval()
encoding = tokenizer.encode_plus(
dialogue,
add_special_tokens=True,
max_length=max_len,
return_token_type_ids=False,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
with torch.no_grad():
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, prediction = torch.max(outputs.logits, dim=1)
probability = torch.nn.functional.softmax(outputs.logits, dim=1)
return {
"dialogue": dialogue,
"prediction": "可疑对话" if prediction.item() == 1 else "正常对话",
"confidence": probability[0][prediction.item()].item(),
"suspicious_score": probability[0][1].item()
}
# 10. 测试示例
test_dialogues = [
"用户A: 可以微信转账吗?\n用户B: 加我微信123456,转完发货",
"用户A: 质量怎么样?\n用户B: 都是正品,支持平台验货",
"用户A: 平台手续费太高了\n用户B: 我们私下交易,给你优惠价",
"用户A: 什么时候能发货?\n用户B: 付款后24小时内发货"
]
for dialogue in test_dialogues:
result = predict_intent(dialogue, model, tokenizer, device)
print(f"对话: {result['dialogue']}")
print(f"预测: {result['prediction']} (置信度: {result['confidence']:.4f})")
print(f"可疑指数: {result['suspicious_score']:.4f}")
print("-" * 50)
代码说明:
-
数据生成:
- 创建500个对话样本(50%正常,50%可疑)
- 正常对话:普通购物咨询
- 可疑对话:包含线下交易、第三方联系方式等关键词
-
数据处理:
- 使用
bert-base-chinese分词器 - 创建PyTorch数据集和数据加载器
- 设置最大序列长度64
- 使用
-
模型构建:
- 基于预训练的BERT模型添加分类层
- 使用交叉熵损失函数
- 设置AdamW优化器
-
训练流程:
- 训练5个epoch
- 记录训练/验证损失和准确率
- 使用线性学习率调度
-
评估指标:
- 测试集准确率
- 分类报告(精确率、召回率、F1值)
- 混淆矩阵可视化
-
预测功能:
- 输入新对话,输出预测结果
- 显示预测标签和置信度
- 提供可疑指数(0-1之间的概率值)
关键特征:
- 中文BERT适配:使用
bert-base-chinese预训练模型 - 完整流程:数据生成→预处理→训练→评估→预测
- 可视化分析:混淆矩阵展示模型性能
- 实用预测:输出可疑指数和置信度
预期输出示例:
对话: 用户A: 可以微信转账吗?\n用户B: 加我微信123456,转完发货
预测: 可疑对话 (置信度: 0.9987)
可疑指数: 0.9987
--------------------------------------------------
对话: 用户A: 质量怎么样?\n用户B: 都是正品,支持平台验货
预测: 正常对话 (置信度: 0.9921)
可疑指数: 0.0079
--------------------------------------------------
扩展建议:
- 增加更多对话模式和关键词
- 尝试不同预训练模型(如RoBERTa)
- 添加实体识别强化关键词检测
- 集成规则引擎提高准确率
此代码完整实现了从数据生成到模型部署的全流程,可以直接运行(需安装transformers、torch等库)。