以下为 HarmonyOS 5端侧NPU加速模型的能耗量化测试方案,包含功耗采集、性能分析和收益评估的完整代码实现:
1. 测试架构设计
2. 功耗采集模块
2.1 硬件级功耗监控
// power-monitor.ets
class NPUPowerMonitor {
static async startTracking() {
const sensor = await PowerProfile.getSensor('npu');
return sensor.createReader({
samplingRate: 1000, // 1kHz采样
metrics: ['power', 'voltage', 'current']
});
}
static async measureInference(model: Model, input: Tensor) {
const reader = await this.startTracking();
// 开始记录
const traces = reader.startRecording();
// 执行推理
const outputs = await model.inference(input);
// 停止记录
const powerData = reader.stopRecording();
return {
outputs,
powerData,
duration: performance.now() - startTime
};
}
}
2.2 能效计算工具
// energy-calculator.ets
class EnergyProfiler {
static calculate(powerData: PowerTrace): EnergyMetrics {
const energy = powerData.reduce((sum, sample) => {
return sum + (sample.power * sample.duration / 1000); // mW*ms => μJ
}, 0);
return {
totalEnergy: energy,
peakPower: Math.max(...powerData.map(p => p.power)),
avgPower: powerData.reduce((a, b) => a + b.power, 0) / powerData.length
};
}
}
3. NPU加速测试
3.1 模型编译优化
// npu-compiler.ets
class NPUCompiler {
static async compileForNPU(model: Model): Promise<NPUModel> {
const compiled = await NeuralNetwork.compile(model, {
acceleration: 'npu',
precision: 'int8',
optimization: {
layerFusion: true,
weightSharing: true
}
});
return compiled;
}
}
3.2 推理性能对比
// inference-benchmark.ets
async function benchmark(model: Model, inputs: Tensor[]) {
// CPU基准
const cpuResults = await InferenceRunner.run(model, inputs, { device: 'cpu' });
// NPU加速
const npuModel = await NPUCompiler.compileForNPU(model);
const npuResults = await InferenceRunner.run(npuModel, inputs, { device: 'npu' });
return {
cpu: cpuResults,
npu: npuResults
};
}
4. 能耗收益分析
4.1 关键指标计算
// metrics-calculator.ets
class NPUMetrics {
static compare(cpuMetrics: EnergyMetrics, npuMetrics: EnergyMetrics) {
return {
energySaved: cpuMetrics.totalEnergy - npuMetrics.totalEnergy,
powerReduction: cpuMetrics.avgPower - npuMetrics.avgPower,
speedup: cpuMetrics.duration / npuMetrics.duration,
efficiencyGain: (cpuMetrics.totalEnergy / npuMetrics.totalEnergy).toFixed(2)
};
}
}
4.2 收益可视化
// visualization.ets
@Component
struct EnergyChart {
@Prop cpuData: EnergyMetrics;
@Prop npuData: EnergyMetrics;
build() {
Column() {
Gauge({
value: this.npuData.totalEnergy,
min: 0,
max: this.cpuData.totalEnergy,
title: '能耗对比 (μJ)'
})
BarChart({
data: [
{ label: 'CPU', value: this.cpuData.avgPower },
{ label: 'NPU', value: this.npuData.avgPower }
],
title: '平均功耗 (mW)'
})
}
}
}
5. 完整测试流程
5.1 测试工作流
// test-workflow.ets
async function runNPUBenchmark(model: Model) {
// 1. 准备测试数据
const inputs = await DataLoader.loadTestData(model.inputShape);
// 2. CPU基准测试
const cpuTrace = await PowerMonitor.measureInference(model, inputs[0]);
const cpuEnergy = EnergyProfiler.calculate(cpuTrace.powerData);
// 3. NPU加速测试
const npuModel = await NPUCompiler.compileForNPU(model);
const npuTrace = await PowerMonitor.measureInference(npuModel, inputs[0]);
const npuEnergy = EnergyProfiler.calculate(npuTrace.powerData);
// 4. 生成报告
return {
model: model.name,
cpu: { ...cpuTrace, energy: cpuEnergy },
npu: { ...npuTrace, energy: npuEnergy },
benefits: NPUMetrics.compare(cpuEnergy, npuEnergy)
};
}
5.2 多模型测试
// multi-model-test.ets
const MODELS = [
{ name: 'MobileNetV3', path: 'models/mobilenetv3.json' },
{ name: 'YOLOv5n', path: 'models/yolov5n-int8.json' }
];
async function fullBenchmark() {
const results = [];
for (const model of MODELS) {
const loaded = await ModelLoader.load(model.path);
results.push(await runNPUBenchmark(loaded));
}
return results;
}
6. 高级分析功能
6.1 能效比计算
// efficiency.ets
class EfficiencyAnalyzer {
static calculate(model: Model, energyData: EnergyData) {
const tops = model.ops / energyData.duration; // TOPS
const topsPerWatt = tops / (energyData.energy.avgPower / 1000);
return {
computeEfficiency: topsPerWatt,
energyPerInference: energyData.energy.totalEnergy
};
}
}
6.2 温度影响分析
// thermal-impact.ets
class ThermalAnalyzer {
static async measureThermalThrottling() {
const tempSensor = await Device.getSensor('thermal');
const model = await ModelLoader.load('models/resnet50.json');
const records = [];
for (let i = 0; i < 100; i++) {
const temp = await tempSensor.read();
const result = await InferenceRunner.run(model);
records.push({ temp, latency: result.latency });
}
return this.analyzeThrottling(records);
}
}
7. 测试报告生成
7.1 文本报告
// report-generator.ets
function generateTextReport(results: BenchmarkResult[]) {
return `
# NPU加速能效报告
## 测试环境
- 设备: ${DeviceInfo.model}
- HarmonyOS版本: ${DeviceInfo.osVersion}
- NPU驱动版本: ${NPUInfo.driverVersion}
${results.map(r => `
## ${r.model}
| 指标 | CPU | NPU | 收益 |
|--------------|-----------|-----------|-----------|
| 能耗(μJ) | ${r.cpu.energy.totalEnergy} | ${r.npu.energy.totalEnergy} | ${r.benefits.energySaved} (${r.benefits.efficiencyGain}x) |
| 时延(ms) | ${r.cpu.duration} | ${r.npu.duration} | ${r.benefits.speedup.toFixed(2)}x |
`).join('\n')}
`;
}
7.2 可视化仪表盘
// dashboard.ets
@Component
struct NPUDashboard {
@State results: BenchmarkResult[] = [];
build() {
Grid() {
ForEach(this.results, result => {
GridItem() {
EnergyChart({ cpuData: result.cpu.energy, npuData: result.npu.energy })
Text(`模型: ${result.model}`)
}
})
}
}
}
8. 持续集成集成
8.1 自动化测试脚本
#!/bin/bash
# run-benchmark.sh
ohpm install @npu/benchmark-tools
harmony-bench --model ./models --output ./reports
8.2 CI配置示例
# .github/workflows/npu-test.yml
jobs:
npu-benchmark:
runs-on: harmonyos-npu
steps:
- uses: harmonyos/npu-benchmark-action@v1
with:
models: 'mobilenet,yolov5'
iterations: 100
9. 关键性能指标
| 指标 | 测量方法 | 预期收益 |
|---|---|---|
| 单次推理能耗 | 电流电压积分 | 降低50%-80% |
| 峰值功耗 | 最大瞬时功率 | 降低60%+ |
| 计算能效比 | TOPS/Watt | 提升3-5倍 |
| 热功耗积 | 温度*功耗 | 降低70%+ |
10. 扩展测试场景
10.1 多batch测试
// batch-test.ets
class BatchTester {
static async testBatchSizes(model: Model, sizes: number[]) {
return Promise.all(sizes.map(async batch => {
const input = generateRandomInput(batch, model.inputShape);
const result = await runNPUBenchmark(model, input);
return { batch, ...result };
}));
}
}
10.2 混合精度分析
// precision-test.ets
async function testPrecisions(model: Model) {
const precisions = ['float32', 'int16', 'int8'];
return Promise.all(precisions.map(async p => {
const quantized = await Quantizer.quantize(model, { precision: p });
return runNPUBenchmark(quantized);
}));
}
11. 设备端部署验证
11.1 实时功耗监控
// realtime-monitor.ets
@Component
struct PowerMonitorUI {
@State power: number = 0;
build() {
Column() {
Text(`实时功耗: ${this.power}mW`)
.fontColor(this.power > 500 ? '#ff0000' : '#00aa00')
Button('开始监控')
.onClick(() => {
setInterval(async () => {
this.power = await PowerProfile.getInstantPower('npu');
}, 200);
})
}
}
}
11.2 能效告警系统
// power-alert.ets
class PowerGuard {
static async watch(threshold: number) {
PowerProfile.on('power-exceed', async (data) => {
if (data.power > threshold) {
await Logger.critical(`功耗超标: ${data.power}mW`);
await PowerProfile.throttleNPU(); // 动态降频
}
});
}
}
12. 完整测试示例
12.1 单模型测试
// single-model-test.ets
describe('MobileNetV3 NPU加速测试', () => {
let model: Model;
beforeAll(async () => {
model = await ModelLoader.load('models/mobilenetv3-int8.json');
});
it('NPU能耗应低于CPU 60%', async () => {
const result = await runNPUBenchmark(model);
expect(result.benefits.energySaved).toBeGreaterThan(0.6 * result.cpu.energy.totalEnergy);
});
it('推理速度应提升3倍以上', async () => {
const result = await runNPUBenchmark(model);
expect(result.benefits.speedup).toBeGreaterThan(3);
});
});
12.2 能效比断言
// efficiency-test.ets
it('应达到5TOPS/W能效比', async () => {
const result = await runNPUBenchmark(model);
const efficiency = EfficiencyAnalyzer.calculate(model, result.npu);
expect(efficiency.computeEfficiency).toBeGreaterThan(5);
});
通过本方案可实现:
- 精准量化 NPU加速收益
- 多维度 能效分析
- 实时 功耗监控
- 自动化 性能断言