HarmonyOS5 端侧模型推理测试:如何量化NPU加速后的能耗收益

157 阅读3分钟

以下为 ​​HarmonyOS 5端侧NPU加速模型的能耗量化测试方案​​,包含功耗采集、性能分析和收益评估的完整代码实现:


1. 测试架构设计

image.png


2. 功耗采集模块

2.1 硬件级功耗监控

// power-monitor.ets
class NPUPowerMonitor {
  static async startTracking() {
    const sensor = await PowerProfile.getSensor('npu');
    return sensor.createReader({
      samplingRate: 1000, // 1kHz采样
      metrics: ['power', 'voltage', 'current']
    });
  }

  static async measureInference(model: Model, input: Tensor) {
    const reader = await this.startTracking();
    
    // 开始记录
    const traces = reader.startRecording();
    
    // 执行推理
    const outputs = await model.inference(input);
    
    // 停止记录
    const powerData = reader.stopRecording();
    
    return {
      outputs,
      powerData,
      duration: performance.now() - startTime
    };
  }
}

2.2 能效计算工具

// energy-calculator.ets
class EnergyProfiler {
  static calculate(powerData: PowerTrace): EnergyMetrics {
    const energy = powerData.reduce((sum, sample) => {
      return sum + (sample.power * sample.duration / 1000); // mW*ms => μJ
    }, 0);

    return {
      totalEnergy: energy,
      peakPower: Math.max(...powerData.map(p => p.power)),
      avgPower: powerData.reduce((a, b) => a + b.power, 0) / powerData.length
    };
  }
}

3. NPU加速测试

3.1 模型编译优化

// npu-compiler.ets
class NPUCompiler {
  static async compileForNPU(model: Model): Promise<NPUModel> {
    const compiled = await NeuralNetwork.compile(model, {
      acceleration: 'npu',
      precision: 'int8',
      optimization: {
        layerFusion: true,
        weightSharing: true
      }
    });
    
    return compiled;
  }
}

3.2 推理性能对比

// inference-benchmark.ets
async function benchmark(model: Model, inputs: Tensor[]) {
  // CPU基准
  const cpuResults = await InferenceRunner.run(model, inputs, { device: 'cpu' });
  
  // NPU加速
  const npuModel = await NPUCompiler.compileForNPU(model);
  const npuResults = await InferenceRunner.run(npuModel, inputs, { device: 'npu' });
  
  return {
    cpu: cpuResults,
    npu: npuResults
  };
}

4. 能耗收益分析

4.1 关键指标计算

// metrics-calculator.ets
class NPUMetrics {
  static compare(cpuMetrics: EnergyMetrics, npuMetrics: EnergyMetrics) {
    return {
      energySaved: cpuMetrics.totalEnergy - npuMetrics.totalEnergy,
      powerReduction: cpuMetrics.avgPower - npuMetrics.avgPower,
      speedup: cpuMetrics.duration / npuMetrics.duration,
      efficiencyGain: (cpuMetrics.totalEnergy / npuMetrics.totalEnergy).toFixed(2)
    };
  }
}

4.2 收益可视化

// visualization.ets
@Component
struct EnergyChart {
  @Prop cpuData: EnergyMetrics;
  @Prop npuData: EnergyMetrics;

  build() {
    Column() {
      Gauge({
        value: this.npuData.totalEnergy,
        min: 0,
        max: this.cpuData.totalEnergy,
        title: '能耗对比 (μJ)'
      })
      
      BarChart({
        data: [
          { label: 'CPU', value: this.cpuData.avgPower },
          { label: 'NPU', value: this.npuData.avgPower }
        ],
        title: '平均功耗 (mW)'
      })
    }
  }
}

5. 完整测试流程

5.1 测试工作流

// test-workflow.ets
async function runNPUBenchmark(model: Model) {
  // 1. 准备测试数据
  const inputs = await DataLoader.loadTestData(model.inputShape);
  
  // 2. CPU基准测试
  const cpuTrace = await PowerMonitor.measureInference(model, inputs[0]);
  const cpuEnergy = EnergyProfiler.calculate(cpuTrace.powerData);
  
  // 3. NPU加速测试
  const npuModel = await NPUCompiler.compileForNPU(model);
  const npuTrace = await PowerMonitor.measureInference(npuModel, inputs[0]);
  const npuEnergy = EnergyProfiler.calculate(npuTrace.powerData);
  
  // 4. 生成报告
  return {
    model: model.name,
    cpu: { ...cpuTrace, energy: cpuEnergy },
    npu: { ...npuTrace, energy: npuEnergy },
    benefits: NPUMetrics.compare(cpuEnergy, npuEnergy)
  };
}

5.2 多模型测试

// multi-model-test.ets
const MODELS = [
  { name: 'MobileNetV3', path: 'models/mobilenetv3.json' },
  { name: 'YOLOv5n', path: 'models/yolov5n-int8.json' }
];

async function fullBenchmark() {
  const results = [];
  
  for (const model of MODELS) {
    const loaded = await ModelLoader.load(model.path);
    results.push(await runNPUBenchmark(loaded));
  }
  
  return results;
}

6. 高级分析功能

6.1 能效比计算

// efficiency.ets
class EfficiencyAnalyzer {
  static calculate(model: Model, energyData: EnergyData) {
    const tops = model.ops / energyData.duration; // TOPS
    const topsPerWatt = tops / (energyData.energy.avgPower / 1000);
    
    return {
      computeEfficiency: topsPerWatt,
      energyPerInference: energyData.energy.totalEnergy
    };
  }
}

6.2 温度影响分析

// thermal-impact.ets
class ThermalAnalyzer {
  static async measureThermalThrottling() {
    const tempSensor = await Device.getSensor('thermal');
    const model = await ModelLoader.load('models/resnet50.json');
    
    const records = [];
    for (let i = 0; i < 100; i++) {
      const temp = await tempSensor.read();
      const result = await InferenceRunner.run(model);
      records.push({ temp, latency: result.latency });
    }
    
    return this.analyzeThrottling(records);
  }
}

7. 测试报告生成

7.1 文本报告

// report-generator.ets
function generateTextReport(results: BenchmarkResult[]) {
  return `
  # NPU加速能效报告
  ## 测试环境
  - 设备: ${DeviceInfo.model}
  - HarmonyOS版本: ${DeviceInfo.osVersion}
  - NPU驱动版本: ${NPUInfo.driverVersion}

  ${results.map(r => `
  ## ${r.model}
  | 指标         | CPU       | NPU       | 收益       |
  |--------------|-----------|-----------|-----------|
  | 能耗(μJ)     | ${r.cpu.energy.totalEnergy} | ${r.npu.energy.totalEnergy} | ${r.benefits.energySaved} (${r.benefits.efficiencyGain}x) |
  | 时延(ms)     | ${r.cpu.duration} | ${r.npu.duration} | ${r.benefits.speedup.toFixed(2)}x |
  `).join('\n')}
  `;
}

7.2 可视化仪表盘

// dashboard.ets
@Component
struct NPUDashboard {
  @State results: BenchmarkResult[] = [];

  build() {
    Grid() {
      ForEach(this.results, result => {
        GridItem() {
          EnergyChart({ cpuData: result.cpu.energy, npuData: result.npu.energy })
          Text(`模型: ${result.model}`)
        }
      })
    }
  }
}

8. 持续集成集成

8.1 自动化测试脚本

#!/bin/bash
# run-benchmark.sh
ohpm install @npu/benchmark-tools
harmony-bench --model ./models --output ./reports

8.2 CI配置示例

# .github/workflows/npu-test.yml
jobs:
  npu-benchmark:
    runs-on: harmonyos-npu
    steps:
      - uses: harmonyos/npu-benchmark-action@v1
        with:
          models: 'mobilenet,yolov5'
          iterations: 100

9. 关键性能指标

指标测量方法预期收益
单次推理能耗电流电压积分降低50%-80%
峰值功耗最大瞬时功率降低60%+
计算能效比TOPS/Watt提升3-5倍
热功耗积温度*功耗降低70%+

10. 扩展测试场景

10.1 多batch测试

// batch-test.ets
class BatchTester {
  static async testBatchSizes(model: Model, sizes: number[]) {
    return Promise.all(sizes.map(async batch => {
      const input = generateRandomInput(batch, model.inputShape);
      const result = await runNPUBenchmark(model, input);
      return { batch, ...result };
    }));
  }
}

10.2 混合精度分析

// precision-test.ets
async function testPrecisions(model: Model) {
  const precisions = ['float32', 'int16', 'int8'];
  return Promise.all(precisions.map(async p => {
    const quantized = await Quantizer.quantize(model, { precision: p });
    return runNPUBenchmark(quantized);
  }));
}

11. 设备端部署验证

11.1 实时功耗监控

// realtime-monitor.ets
@Component
struct PowerMonitorUI {
  @State power: number = 0;

  build() {
    Column() {
      Text(`实时功耗: ${this.power}mW`)
        .fontColor(this.power > 500 ? '#ff0000' : '#00aa00')
      
      Button('开始监控')
        .onClick(() => {
          setInterval(async () => {
            this.power = await PowerProfile.getInstantPower('npu');
          }, 200);
        })
    }
  }
}

11.2 能效告警系统

// power-alert.ets
class PowerGuard {
  static async watch(threshold: number) {
    PowerProfile.on('power-exceed', async (data) => {
      if (data.power > threshold) {
        await Logger.critical(`功耗超标: ${data.power}mW`);
        await PowerProfile.throttleNPU(); // 动态降频
      }
    });
  }
}

12. 完整测试示例

12.1 单模型测试

// single-model-test.ets
describe('MobileNetV3 NPU加速测试', () => {
  let model: Model;
  
  beforeAll(async () => {
    model = await ModelLoader.load('models/mobilenetv3-int8.json');
  });

  it('NPU能耗应低于CPU 60%', async () => {
    const result = await runNPUBenchmark(model);
    expect(result.benefits.energySaved).toBeGreaterThan(0.6 * result.cpu.energy.totalEnergy);
  });

  it('推理速度应提升3倍以上', async () => {
    const result = await runNPUBenchmark(model);
    expect(result.benefits.speedup).toBeGreaterThan(3);
  });
});

12.2 能效比断言

// efficiency-test.ets
it('应达到5TOPS/W能效比', async () => {
  const result = await runNPUBenchmark(model);
  const efficiency = EfficiencyAnalyzer.calculate(model, result.npu);
  expect(efficiency.computeEfficiency).toBeGreaterThan(5);
});

通过本方案可实现:

  1. ​精准量化​​ NPU加速收益
  2. ​多维度​​ 能效分析
  3. ​实时​​ 功耗监控
  4. ​自动化​​ 性能断言