以下为 HarmonyOS 5 异构计算调度测试方案,实现CNN模型分层自动分配与负载均衡的完整代码实现:
1. 系统架构
2. 核心调度模块
2.1 智能层分配器
// layer-scheduler.ets
class HeterogeneousScheduler {
static async partitionModel(model: CNNModel): Promise<LayerAssignment[]> {
const layerMetrics = await Profiler.profileLayers(model);
const deviceCapabilities = await DeviceMonitor.getCapabilities();
return layerMetrics.map(layer => {
// NPU优先策略
if (layer.ops.includes('Conv2D') &&
deviceCapabilities.npu.ops.includes(layer.type)) {
return { layer, device: 'NPU' };
}
// GPU适合大矩阵运算
if (layer.flops > 1e6 && deviceCapabilities.gpu.memory > layer.memReq) {
return { layer, device: 'GPU' };
}
// 默认CPU处理
return { layer, device: 'CPU' };
});
}
}
2.2 实时负载均衡器
// load-balancer.ets
class DynamicLoadBalancer {
private static deviceLoads = { NPU: 0, GPU: 0, CPU: 0 };
static async adjustAllocation(task: LayerTask): Promise<string> {
const currentLoad = await DeviceMonitor.getCurrentLoad();
const capabilities = DeviceMonitor.getCapabilities();
// 负载均衡算法
const scores = {
NPU: this.calculateScore('NPU', task, currentLoad, capabilities),
GPU: this.calculateScore('GPU', task, currentLoad, capabilities),
CPU: this.calculateScore('CPU', task, currentLoad, capabilities)
};
return Object.entries(scores).reduce((a, b) =>
a[1] > b[1] ? a : b
)[0];
}
private static calculateScore(
device: DeviceType,
task: LayerTask,
load: DeviceLoad,
caps: DeviceCapabilities
): number {
const perfScore = caps[device].peakPerf / task.requiredFlops;
const loadPenalty = load[device] / 100;
const memScore = caps[device].memory / task.memReq;
return perfScore * (1 - loadPenalty) * Math.min(memScore, 1);
}
}
3. 设备适配层
3.1 NPU加速器
// npu-executor.ets
class NPUAccelerator {
static async execute(layer: Layer, input: Tensor): Promise<Tensor> {
const kernel = await NPUKernelCompiler.compile(layer);
return NPURuntime.execute(kernel, input, {
priority: 'HIGH',
memoryPolicy: 'REUSE'
});
}
}
3.2 GPU执行器
// gpu-executor.ets
class GPUOffloader {
static async process(layer: Layer, input: Tensor): Promise<Tensor> {
const stream = await GPUContext.createStream();
const buffer = await GPUMemory.alloc(layer.outputShape);
return GPUProgram.run(
'cnn_kernel',
input,
buffer,
{
threadPerBlock: [16, 16],
blocks: this.calcBlocks(layer.outputShape)
}
);
}
}
4. 性能监控系统
4.1 实时指标采集
// performance-monitor.ets
class DeviceMonitor {
static async getCurrentLoad(): Promise<DeviceLoad> {
return {
NPU: await this.queryNPULoad(),
GPU: await this.queryGPULoad(),
CPU: await this.queryCPULoad()
};
}
private static async queryNPULoad(): Promise<number> {
const stats = await NPUDriver.getStats();
return stats.activeCores / stats.totalCores;
}
}
4.2 历史数据分析
// history-analyzer.ets
class PerformanceAnalyzer {
static async findBottleneck(layerLogs: LayerLog[]): Promise<Bottleneck[]> {
const avgTimes = layerLogs.reduce((acc, log) => {
if (!acc[log.layerId]) acc[log.layerId] = [];
acc[log.layerId].push(log.duration);
return acc;
}, {});
return Object.entries(avgTimes).map(([layerId, times]) => ({
layerId,
avgTime: average(times),
stdDev: standardDeviation(times),
device: layerLogs.find(l => l.layerId === layerId)!.device
})).filter(x => x.avgTime > 10); // 超过10ms视为瓶颈
}
}
5. 测试验证框架
5.1 分配策略验证
// allocation-test.ets
describe('异构分配策略', () => {
let model: CNNModel;
beforeAll(async () => {
model = await ModelLoader.load('mobilenet_v3');
});
it('Conv层应优先分配NPU', async () => {
const assignments = await HeterogeneousScheduler.partitionModel(model);
const convLayers = assignments.filter(a =>
a.layer.type === 'Conv2D'
);
expect(convLayers.every(a => a.device === 'NPU')).toBeTruthy();
});
it('负载过高时应动态迁移', async () => {
// 模拟NPU过载
DeviceMonitor.mockLoad({ NPU: 95, GPU: 40, CPU: 60 });
const task = { layer: model.layers[0], requiredFlops: 1e9, memReq: 500 };
const targetDevice = await DynamicLoadBalancer.adjustAllocation(task);
expect(targetDevice).toBe('GPU');
});
});
5.2 端到端性能测试
// e2e-test.ets
class EndToEndTester {
static async testModel(model: CNNModel) {
// 1. 初始分配
const assignments = await HeterogeneousScheduler.partitionModel(model);
// 2. 执行推理
const input = Tensor.random(model.inputShape);
const results = await Promise.all(
assignments.map(async ({ layer, device }) => {
const start = performance.now();
const output = await this.executeOnDevice(layer, input, device);
return { layerId: layer.id, device, duration: performance.now() - start };
})
);
// 3. 分析性能
return PerformanceAnalyzer.analyze(results);
}
}
6. 可视化监控面板
6.1 实时负载仪表盘
// load-dashboard.ets
@Component
struct LoadDashboard {
@State loadData: DeviceLoad[] = [];
build() {
Grid() {
GridItem() {
Gauge({
value: this.loadData.NPU,
title: 'NPU负载',
color: '#ff6384'
})
}
GridItem() {
LineChart({
data: this.loadData.map((_, i) => ({
x: i,
y: [this.loadData[i].NPU, this.loadData[i].GPU, this.loadData[i].CPU]
})),
series: ['NPU', 'GPU', 'CPU']
})
}
}
.onAppear(() => {
setInterval(async () => {
this.loadData.push(await DeviceMonitor.getCurrentLoad());
}, 1000);
})
}
}
6.2 层执行热力图
// layer-heatmap.ets
@Component
struct LayerHeatmap {
@Prop layerMetrics: LayerMetric[];
build() {
Heatmap({
data: this.layerMetrics.map(metric => ({
x: metric.layerId,
y: metric.device,
value: metric.duration
})),
xLabel: '网络层',
yLabel: '执行设备',
colorScale: ['#00ff00', '#ff0000']
})
}
}
7. 关键性能指标
| 指标 | 测量方法 | 目标值 |
|---|---|---|
| 设备利用率 | 活跃计算单元占比 | NPU>80% |
| 层分配合理性 | 关键层加速比 | Conv2D≥3x |
| 负载均衡度 | 设备间负载标准差 | <15% |
| 端到端延迟 | 全流程执行时间 | <100ms |
8. 高级测试场景
8.1 突发负载测试
// burst-test.ets
class BurstLoadTest {
static async simulatePeakLoad() {
// 并行执行多个模型
const models = await Promise.all([
ModelLoader.load('resnet50'),
ModelLoader.load('yolov5'),
ModelLoader.load('bert')
]);
const results = await Promise.all(
models.map(model =>
HeterogeneousExecutor.run(model, randomInput())
)
);
// 验证无死锁和超时
expect(results.every(r => !r.error)).toBeTruthy();
expect(DeviceMonitor.getMaxLoad().CPU).toBeLessThan(95);
}
}
8.2 故障转移测试
// failover-test.ets
describe('设备故障转移', () => {
it('NPU故障时应自动降级', async () => {
// 模拟NPU故障
NPUDevice.simulateFailure();
const model = await ModelLoader.load('efficientnet');
const assignments = await HeterogeneousScheduler.partitionModel(model);
expect(assignments.some(a =>
a.layer.type === 'Conv2D' && a.device === 'GPU'
)).toBeTruthy();
});
});
9. 调度优化建议
9.1 智能重分配建议
// rebalancer.ets
class AutoRebalancer {
static async optimize(model: CNNModel): Promise<ReallocPlan> {
const history = await PerformanceDB.queryHistory(model.name);
const bottlenecks = PerformanceAnalyzer.findBottleneck(history);
return bottlenecks.map(bottleneck => {
const alternatives = ['NPU', 'GPU', 'CPU'].filter(d => d !== bottleneck.device);
const scores = alternatives.map(device => ({
device,
score: this.calculateGain(bottleneck, device)
}));
return {
layerId: bottleneck.layerId,
currentDevice: bottleneck.device,
recommended: scores.reduce((a, b) => a.score > b.score ? a : b).device
};
});
}
}
9.2 内存优化策略
// memory-optimizer.ets
class MemoryOptimizer {
static async optimizeAllocation(plan: LayerAssignment[]): Promise<LayerAssignment[]> {
const deviceMemory = await DeviceMonitor.getAvailableMemory();
return plan.map(assignment => {
if (assignment.layer.memReq > deviceMemory[assignment.device] * 0.8) {
return this.findAlternative(assignment, deviceMemory);
}
return assignment;
});
}
private static findAlternative(
original: LayerAssignment,
memory: DeviceMemory
): LayerAssignment {
const altDevices = ['NPU', 'GPU', 'CPU'].filter(d =>
d !== original.device &&
memory[d] >= original.layer.memReq
);
return altDevices.length > 0 ?
{ ...original, device: altDevices[0] } :
original;
}
}
10. 完整测试示例
10.1 性能基准测试
// benchmark.ets
async function runBenchmark() {
const model = await ModelLoader.load('mobilenet_v3');
const input = Tensor.random(model.inputShape);
// 1. 单设备基准
const cpuTime = await measure(() => CPUExecutor.run(model, input));
const gpuTime = await measure(() => GPUExecutor.run(model, input));
// 2. 异构调度测试
const heteroTime = await measure(() =>
HeterogeneousScheduler.execute(model, input)
);
return {
cpuTime,
gpuTime,
heteroTime,
speedup: {
vsCPU: cpuTime / heteroTime,
vsGPU: gpuTime / heteroTime
}
};
}
10.2 CI集成配置
# .github/workflows/hetero-test.yml
jobs:
hetero-schedule:
runs-on: harmonyos-multi-device
steps:
- uses: harmonyos/hetero-test-action@v1
with:
models: 'mobilenet_v3,yolov5'
test-cases: 'normal,overload,failure'
- name: Upload report
uses: actions/upload-artifact@v3
with:
name: hetero-report
path: report.html
通过本方案可实现:
- 智能分层 自动分配CNN计算图
- 动态负载 实时均衡设备利用率
- 故障自愈 设备异常时自动降级
- 性能可视 全流程执行热力图