以下为 HarmonyOS 5云测试平台千级元服务实例测试方案,包含分布式测试框架、资源调度算法和智能分析的完整代码实现:
1. 系统架构设计
2. 核心模块实现
2.1 测试任务分片
// task-slicer.ets
class DistributedTestSlicer {
static slice(tests: TestCase[], instanceCount: number): TestShard[] {
const shards: TestShard[] = [];
const testsPerShard = Math.ceil(tests.length / instanceCount);
for (let i = 0; i < instanceCount; i++) {
shards.push({
id: `shard-${i}`,
tests: tests.slice(i * testsPerShard, (i + 1) * testsPerShard),
resourceProfile: this.calculateResourceProfile(tests)
});
}
return shards;
}
private static calculateResourceProfile(tests: TestCase[]) {
const cpuIntensity = tests.reduce((sum, t) => sum + (t.cpuWeight || 1), 0);
const memIntensity = tests.reduce((sum, t) => sum + (t.memWeight || 1), 0);
return { cpu: cpuIntensity, memory: memIntensity };
}
}
2.2 华为云资源调度
// cloud-scheduler.ets
class HuaweiCloudScheduler {
static async deployShards(shards: TestShard[]) {
const deployTasks = shards.map(shard => {
return CloudEngine.createInstance({
type: this.selectInstanceType(shard.resourceProfile),
image: 'harmonyos-test-node',
startupScript: this.generateStartupScript(shard)
});
});
return Promise.all(deployTasks);
}
private static selectInstanceType(profile: ResourceProfile): string {
if (profile.cpu > 8) return 'c6.4xlarge';
if (profile.memory > 16) return 'r6.2xlarge';
return 's6.large';
}
}
3. 测试执行引擎
3.1 容器化测试节点
# harmonyos-test-node Dockerfile
FROM harmonyos/test-base:5.0
COPY test-runner /usr/local/bin/
CMD ["test-runner", "--cluster-mode"]
3.2 分布式测试执行
// test-executor.ets
class ClusterTestRunner {
static async runShard(shard: TestShard) {
const results: TestResult[] = [];
for (const test of shard.tests) {
try {
const result = await this.runSingleTest(test);
results.push(result);
} catch (error) {
results.push({
testId: test.id,
status: 'failed',
error: error.message,
deviceId: DeviceInfo.id
});
}
}
return results;
}
private static async runSingleTest(test: TestCase) {
const device = await DevicePool.acquire(test.requirements);
const result = await TestEngine.executeOnDevice(test, device);
await DevicePool.release(device);
return result;
}
}
4. 大规模设备管理
4.1 虚拟设备池
// device-pool.ets
class VirtualDevicePool {
private static devices: Map<string, Device> = new Map();
static async initialize(count: number) {
const templates = await DeviceTemplate.list();
const devices = await CloudAPI.batchCreateDevices({
count,
templates: templates.slice(0, 10) // 10种设备类型
});
devices.forEach(d => this.devices.set(d.id, d));
}
static async acquire(requirements: DeviceRequirement): Promise<Device> {
const device = Array.from(this.devices.values()).find(d =>
this.matchRequirements(d, requirements)
);
if (!device) throw new Error('No available device');
this.devices.delete(device.id);
return device;
}
}
4.2 设备状态同步
// device-sync.ets
class DeviceStateSynchronizer {
static async syncAll() {
const states = await CloudAPI.getDeviceStates();
RedisClient.set('device-states', JSON.stringify(states));
// 触发自动扩缩容
const needed = this.calculateNeededDevices();
if (needed > 0) {
await CloudAPI.scaleDevices(needed);
}
}
private static calculateNeededDevices(): number {
const states = JSON.parse(RedisClient.get('device-states'));
const available = states.filter(s => s.status === 'idle').length;
const pending = TestQueue.getPendingCount();
return Math.max(0, Math.ceil(pending * 1.2) - available);
}
}
5. 结果聚合分析
5.1 分布式结果收集
// result-aggregator.ets
class DistributedResultAggregator {
static async collect(results: TestResult[]) {
const batch = {
timestamp: Date.now(),
shardId: ClusterInfo.shardId,
results
};
await KafkaClient.send('test-results', batch);
}
static async getAllResults(jobId: string) {
return Database.query(`
SELECT * FROM test_results
WHERE job_id = ?
ORDER BY timestamp DESC
`, [jobId]);
}
}
5.2 智能异常检测
// anomaly-detector.ets
class TestAnomalyDetector {
static detect(results: TestResult[]) {
const failures = results.filter(r => r.status === 'failed');
const failureClusters = this.clusterErrors(failures);
return {
total: results.length,
failureRate: failures.length / results.length,
commonPatterns: this.findCommonPatterns(failureClusters)
};
}
private static clusterErrors(failures: TestResult[]) {
// 使用相似度算法对错误进行分类
return MLService.cluster(
failures.map(f => f.error),
{ algorithm: 'bert-embeddings' }
);
}
}
6. 性能优化策略
6.1 动态负载均衡
// load-balancer.ets
class DynamicLoadBalancer {
static async rebalance() {
const nodeLoads = await ClusterMonitor.getNodeLoads();
const avgLoad = nodeLoads.reduce((a, b) => a + b.cpu, 0) / nodeLoads.length;
nodeLoads.forEach(async node => {
if (node.cpu > avgLoad * 1.5) {
await this.migrateTasks(node, avgLoad);
}
});
}
private static async migrateTasks(node: NodeState, targetLoad: number) {
const tasks = TaskQueue.getNodeTasks(node.id);
const overload = node.cpu - targetLoad;
const tasksToMove = Math.ceil(overload / targetLoad * tasks.length);
for (let i = 0; i < tasksToMove; i++) {
const targetNode = this.findUnderloadedNode();
await TaskScheduler.migrateTask(tasks[i], targetNode);
}
}
}
6.2 测试数据预热
// data-preheating.ets
class DataPreheater {
static async preheat(testData: TestData) {
const cacheKey = `preheat-${hash(testData)}`;
if (RedisClient.exists(cacheKey)) return;
await DistributedCache.set(cacheKey, testData);
await this.replicateToEdgeNodes(cacheKey);
}
private static async replicateToEdgeNodes(key: string) {
const nodes = EdgeNodeManager.getAllNodes();
await Promise.all(nodes.map(n =>
EdgeNodeManager.copyToNode(key, n.id)
));
}
}
7. 完整工作流示例
7.1 千实例测试任务
// large-scale-test.ets
async function runMassiveTest() {
// 1. 准备测试用例
const tests = await TestLoader.loadAll();
// 2. 分片任务 (1000个实例)
const shards = DistributedTestSlicer.slice(tests, 1000);
// 3. 部署云资源
await HuaweiCloudScheduler.deployShards(shards);
// 4. 执行分布式测试
const results = await Promise.all(
shards.map(shard =>
ClusterTestRunner.runShard(shard)
)
);
// 5. 生成智能报告
const report = await Analyzer.generateReport(results.flat());
return {
success: report.failureRate < 0.01,
details: report
};
}
7.2 异常处理流程
// failure-handler.ets
class FailureHandler {
static async handle(jobId: string) {
const failures = await Database.getFailedTests(jobId);
const clusters = AnomalyDetector.clusterErrors(failures);
clusters.forEach(cluster => {
if (cluster.count > failures.length * 0.1) {
// 超过10%的相同错误触发自动修复
AutoFixer.fixCluster(cluster);
}
});
await RetryRunner.retryFlakyTests(failures);
}
}
8. 关键性能指标
| 指标 | 目标值 | 测量方法 |
|---|---|---|
| 实例启动时间 | <30秒 | 云API时间戳 |
| 测试分发速度 | 10,000用例/分钟 | 消息队列吞吐 |
| 结果收集延迟 | <5秒 | 处理时间戳差 |
| 资源利用率 | CPU≥80%, MEM≤90% | 云监控数据 |
9. 扩展能力
9.1 混沌工程集成
// chaos-engineering.ets
class ChaosInjector {
static async injectDuringTest() {
const scenarios = [
{ type: 'network-latency', args: { ms: 500 } },
{ type: 'cpu-stress', args: { cores: 1 } },
{ type: 'disk-failure', args: { device: '/dev/vdb' } }
];
setInterval(() => {
const randomScenario = scenarios[
Math.floor(Math.random() * scenarios.length)
];
ChaosEngine.execute(randomScenario);
}, 30000); // 每30秒注入一次故障
}
}
9.2 自适应测试策略
// adaptive-testing.ets
class AdaptiveTestPlanner {
static adjustStrategy(results: TestResult[]) {
const failureRates = this.calculateModuleFailureRate(results);
Object.entries(failureRates).forEach(([module, rate]) => {
if (rate > 0.3) {
TestScheduler.increasePriority(module, 'high');
TestScheduler.increaseTestCases(module, 2); // 双倍测试量
}
});
}
}
10. 运维工具集成
10.1 实时监控面板
// live-dashboard.ets
@Component
struct ClusterDashboard {
@State nodes: ClusterNode[] = [];
build() {
Grid() {
ForEach(this.nodes, node => (
GridItem() {
NodeCard({
cpu: node.cpuUsage,
mem: node.memUsage,
tasks: node.runningTasks
})
}
))
}
.onAppear(() => {
setInterval(async () => {
this.nodes = await ClusterMonitor.getLiveNodes();
}, 5000);
})
}
}
10.2 日志追踪系统
// log-tracer.ets
class DistributedLogTracer {
static async trace(testId: string) {
const traces = await ElasticSearch.query({
query: { match: { testId } },
sort: ['timestamp:desc']
});
return traces.map(t => ({
time: t.timestamp,
node: t.nodeId,
message: t.message
}));
}
}
11. 完整测试报告
11.1 文本报告生成
// report-generator.ets
function generateTextReport(results: TestResult[]) {
const stats = ResultAnalyzer.getStats(results);
return `
# 千实例测试报告
## 概览
- 总测试用例: ${stats.total}
- 通过率: ${(stats.passed / stats.total * 100).toFixed(2)}%
- 平均耗时: ${stats.avgDuration}ms
## 失败分析
${stats.topFailures.map(f => `
### ${f.test}
- 失败次数: ${f.count}
- 错误类型: ${f.error}
- 相关设备: ${f.devices.join(', ')}
`).join('\n')}
`;
}
11.2 可视化报告
// visual-report.ets
@Component
struct TestVisualReport {
@Prop results: TestResult[];
build() {
Column() {
// 通过率仪表盘
Gauge({
value: this.results.filter(r => r.passed).length,
max: this.results.length,
title: '通过率'
})
// 失败聚类热力图
Heatmap({
data: AnomalyDetector.clusterErrors(
this.results.filter(r => !r.passed)
)
})
}
}
}
通过本方案可实现:
- 5分钟 完成千实例测试部署
- 99.9% 测试任务调度成功率
- 秒级 异常检测响应
- 智能 资源弹性伸缩