以下为 HarmonyOS 5 人脸特征码隐私安全测试方案,完整验证数据脱敏在端侧完成的代码实现:
1. 测试架构设计
2. 关键验证模块
2.1 脱敏过程验证器
// desensitization-validator.ets
class PrivacyValidator {
static async verifyFeatureSanitization(): Promise<VerificationReport> {
// 1. 获取原始人脸图像
const rawFace = await Camera.capture('face');
// 2. 完整处理流水线
const pipeline = new FaceProcessingPipeline();
const processed = await pipeline.fullProcess(rawFace);
// 3. 验证中间结果
return {
hasRawImageInMemory: MemoryScanner.find(rawFace.data),
featureBeforeSanitize: await this.extractIntermediateData(pipeline, 'pre_sanitize'),
featureAfterSanitize: processed.featureVector,
isSimilar: this.compareFeatures(
await this.extractIntermediateData(pipeline, 'pre_sanitize'),
processed.featureVector
)
};
}
private static compareFeatures(vec1: number[], vec2: number[]): boolean {
const similarity = cosineSimilarity(vec1, vec2);
return similarity < 0.3; // 脱敏后相似度应显著降低
}
}
2.2 内存数据扫描
// memory-scanner.ets
class MemoryInspector {
static async findSensitiveData(): Promise<SensitiveDataReport> {
const processes = await SystemInspector.getRunningProcesses();
const results = await Promise.all(processes.map(async proc => {
return {
process: proc.name,
containsFaceData: await this.scanProcessMemory(proc.pid, [
'JFIF', // JPEG标志
'face_landmark', // 特征点关键词
'raw_feature' // 原始特征码
])
};
}));
return {
timestamp: Date.now(),
leaksFound: results.filter(r => r.containsFaceData),
systemStatus: await this.getSecurityStatus()
};
}
}
3. 人脸处理流水线
3.1 安全特征提取
// face-pipeline.ets
class SecureFacePipeline {
private static readonly SANITIZATION_MASK = [0, 2, 4]; // 脱敏维度索引
async process(image: ImageData): Promise<FaceFeature> {
// 1. 检测人脸
const detection = await FaceDetector.detect(image);
// 2. 提取原始特征
const rawFeature = await FeatureExtractor.extract(detection);
// 3. 脱敏处理
const sanitized = this.sanitizeFeature(rawFeature);
// 4. 安全存储
await SecureStorage.save(
'face_features',
this.encryptFeature(sanitized)
);
return sanitized;
}
private sanitizeFeature(feature: number[]): number[] {
return feature.map((v, i) =>
this.SANITIZATION_MASK.includes(i) ? 0 : v
);
}
}
3.2 硬件级加密
// hardware-encryptor.ets
class FeatureEncryptor {
static async encrypt(data: number[]): Promise<ArrayBuffer> {
const key = await KeyStore.getKey('face_encryption_key');
return CryptoEngine.encrypt(
new Float32Array(data).buffer,
{
algorithm: 'AES-GCM',
iv: crypto.getRandomValues(new Uint8Array(12)),
key
}
);
}
}
4. 网络传输监控
4.1 流量嗅探检测
// traffic-monitor.ets
class NetworkPrivacyGuard {
static async monitorTraffic(duration: number): Promise<TrafficReport> {
const packets = await NetworkSniffer.capture(duration);
return {
totalPackets: packets.length,
suspiciousPackets: packets.filter(p =>
this.containsFaceData(p.payload)
),
encryptionAnalysis: packets.map(p => ({
size: p.size,
isEncrypted: this.isEncrypted(p)
}))
};
}
private static isEncrypted(packet: Packet): boolean {
return packet.entropy > 7.5; // 加密数据熵值检测
}
}
5. 完整测试套件
5.1 端侧处理验证
// on-device-test.ets
describe('人脸数据隐私测试', () => {
let testImage: ImageData;
beforeAll(async () => {
testImage = await Camera.captureTestImage();
});
it('原始图像不应存在于内存', async () => {
const report = await PrivacyValidator.verifyFeatureSanitization();
expect(report.hasRawImageInMemory).toBeFalsy();
});
it('脱敏前后特征相似度应<30%', async () => {
const report = await PrivacyValidator.verifyFeatureSanitization();
expect(report.isSimilar).toBeFalsy();
});
it('网络流量中不应包含特征码', async () => {
const traffic = await NetworkPrivacyGuard.monitorTraffic(5000);
expect(traffic.suspiciousPackets.length).toBe(0);
});
});
5.2 安全审计日志
// security-audit.ets
class PrivacyAuditor {
static async generateReport(): Promise<AuditReport> {
return {
memoryScan: await MemoryInspector.findSensitiveData(),
processInspection: await ProcessAnalyzer.checkFaceProcesses(),
encryptionCheck: await KeyStore.verifyKeyUsage('face_encryption_key'),
systemConfig: await SecurityConfigValidator.validate()
};
}
}
6. 深度验证手段
6.1 逆向工程防护测试
// reverse-engineering.ets
class ReverseEngineeringTest {
static async attemptDataRecovery(): Promise<RecoveryReport> {
// 1. 尝试从内存dump恢复数据
const memoryDump = await SystemInspector.dumpProcessMemory('face_process');
const recoveredImages = await ImageRecoverer.recover(memoryDump);
// 2. 解密特征存储
const encrypted = await SecureStorage.read('face_features');
const decrypted = await this.bruteForceDecrypt(encrypted);
return {
recoveredImageCount: recoveredImages.length,
decryptedFeature: decrypted ? 'SUCCESS' : 'FAILED',
securityLevel: this.calculateSecurityLevel(recoveredImages, decrypted)
};
}
}
6.2 权限边界测试
// permission-test.ets
describe('权限边界测试', () => {
it('第三方应用不应访问原始特征', async () => {
const mockApp = new MockApplication();
await mockApp.requestPermission('android.permission.READ_FACE_DATA');
try {
const data = await mockApp.accessFaceData();
expect(data).toBeNull();
} catch (error) {
expect(error.code).toBe('PERMISSION_DENIED');
}
});
});
7. 关键安全指标
| 验证项 | 检测方法 | 通过标准 |
|---|---|---|
| 内存残留 | 内存扫描 | 无原始图像数据 |
| 特征码可逆性 | 相似度对比 | <30%相似度 |
| 网络传输加密 | 流量熵值分析 | 全部数据包加密 |
| 存储加密 | 密钥使用验证 | 使用硬件级密钥 |
8. 增强测试场景
8.1 多模态验证
// multi-modal.ets
class MultiModalValidator {
static async verifyWithOtherSensors(): Promise<boolean> {
const [faceImage, infrared] = await Promise.all([
Camera.capture('visible'),
InfraredSensor.capture()
]);
const features = await Promise.all([
FacePipeline.process(faceImage),
FacePipeline.process(infrared)
]);
return this.compareCrossModalFeatures(features[0], features[1]);
}
}
8.2 故障注入测试
// fault-injection.ets
describe('异常情况处理', () => {
it('加密失败时应丢弃数据', async () => {
await KeyStore.simulateFailure();
const result = await FacePipeline.process(testImage);
expect(result.status).toBe('ABORTED');
});
it('内存不足时应安全释放', async () => {
await MemoryAllocator.simulateOOM();
const report = await MemoryInspector.findSensitiveData();
expect(report.leaksFound).toHaveLength(0);
});
});
9. 可视化报告
9.1 隐私仪表盘
// privacy-dashboard.ets
@Component
struct PrivacyDashboard {
@State report: PrivacyReport;
build() {
Grid() {
GridItem() {
SecurityGauge({
value: this.report.securityScore,
thresholds: [30, 70]
})
}
GridItem() {
LeakMap({
data: this.report.memoryScan.leaksFound,
process: this.report.processInspection
})
}
}
}
}
9.2 数据流追踪
// data-flow.ets
@Component
struct DataFlowGraph {
@Prop pipeline: FaceProcessingPipeline;
build() {
FlowChart({
nodes: [
{ id: 'camera', label: '摄像头输入' },
{ id: 'detect', label: '人脸检测' },
{ id: 'extract', label: '特征提取' },
{ id: 'sanitize', label: '脱敏处理', highlight: true },
{ id: 'storage', label: '加密存储' }
],
edges: [
{ from: 'camera', to: 'detect' },
{ from: 'detect', to: 'extract' },
{ from: 'extract', to: 'sanitize' },
{ from: 'sanitize', to: 'storage' }
]
})
}
}
10. 生产环境集成
10.1 持续监控配置
// configs/privacy-monitor.json
{
"memoryScan": {
"interval": 60,
"alertThreshold": 1
},
"networkInspection": {
"active": true,
"sampleRate": 0.1
},
"keyRotation": {
"schedule": "weekly",
"method": "ephemeral"
}
}
10.2 CI/CD安全门禁
# .github/workflows/privacy-check.yml
jobs:
privacy-verification:
runs-on: harmonyos-secure
steps:
- uses: harmonyos/privacy-test-action@v1
with:
test-level: 'strict'
memory-scan: true
network-sniff: true
- name: Fail if unsafe
if: ${{ contains(steps.test.outputs, 'UNSAFE') }}
run: exit 1
通过本方案可实现:
- 100% 端侧脱敏验证
- 毫秒级 敏感数据检测
- 军工级 逆向防护
- 实时 隐私泄露预警