以下为 HarmonyOS 5端侧NPU模型推理精度测试方案,包含浮点误差量化、对比测试框架和误差分析的完整代码实现:
1. 测试架构设计
2. 核心测试模块
2.1 双路推理执行器
// dual-inference.ets
class InferenceComparator {
static async run(model: Model, input: Tensor): Promise<CompareResult> {
// CPU参考路径
const cpuOutput = await NeuralEngine.runOnCPU(model, input);
// NPU加速路径
const npuOutput = await NPUAccelerator.run(model, input);
return {
cpu: cpuOutput,
npu: npuOutput,
diff: this.calculateDiff(cpuOutput, npuOutput)
};
}
private static calculateDiff(cpu: Tensor, npu: Tensor): DiffMetrics {
const absError = tensorAbs(sub(cpu, npu));
const relError = tensorDiv(absError, tensorAbs(cpu));
return {
maxAbs: tensorMax(absError),
avgAbs: tensorMean(absError),
maxRel: tensorMax(relError),
avgRel: tensorMean(relError)
};
}
}
2.2 误差统计方法
// error-metrics.ets
class ErrorAnalyzer {
static calculateErrorDistribution(ref: Tensor, actual: Tensor): ErrorStats {
const diff = tensorSub(ref, actual);
const absDiff = tensorAbs(diff);
const relDiff = tensorDiv(absDiff, tensorAdd(tensorAbs(ref), 1e-9)); // 避免除零
return {
maxAbsolute: tensorMax(absDiff),
meanAbsolute: tensorMean(absDiff),
maxRelative: tensorMax(relDiff),
meanRelative: tensorMean(relDiff),
errorHistogram: this.buildHistogram(absDiff)
};
}
private static buildHistogram(tensor: Tensor): Histogram {
const values = tensor.dataSync();
return values.reduce((hist, val) => {
const bin = Math.floor(val * 10); // 按0.1间隔分箱
hist[bin] = (hist[bin] || 0) + 1;
return hist;
}, {});
}
}
3. 测试数据集构建
3.1 典型输入生成
// test-data.ets
class TestDataGenerator {
static generateInputs(modelInfo: ModelSpec): Tensor[] {
const inputs = [];
const { inputShape } = modelInfo;
// 标准测试用例
inputs.push(tensorOnes(inputShape)); // 全1输入
inputs.push(tensorZeros(inputShape)); // 全0输入
// 随机测试用例
for (let i = 0; i < 10; i++) {
inputs.push(tensorRandomNormal(inputShape));
}
// 边界值用例
inputs.push(tensorFill(inputShape, 1e-5));
inputs.push(tensorFill(inputShape, 1e5));
return inputs;
}
}
3.2 黄金数据集加载
// golden-data.ets
class GoldenDataset {
static async load(modelName: string): Promise<GoldenData> {
const [inputs, outputs] = await Promise.all([
FileSystem.readTensor(`golden/${modelName}/inputs/`),
FileSystem.readTensor(`golden/${modelName}/outputs/`)
]);
return { inputs, outputs };
}
}
4. NPU特性适配
4.1 量化误差补偿
// quant-compensator.ets
class QuantizationCompensator {
static compensate(output: Tensor, model: Model): Tensor {
if (model.quantization?.type === 'INT8') {
const scale = model.quantization.scale;
return tensorMul(output, scale);
}
return output;
}
}
4.2 NPU精度模式设置
// npu-config.ets
class NPUPrecisionMode {
static setHighPrecision() {
NPUConfig.set({
arithmeticPrecision: 'FP16',
accumulationPrecision: 'FP32'
});
}
static setLowPowerMode() {
NPUConfig.set({
arithmeticPrecision: 'INT8',
accumulationPrecision: 'INT16'
});
}
}
5. 完整测试流程
5.1 精度验证主流程
// precision-test.ets
async function runPrecisionTest(model: Model) {
// 1. 准备测试数据
const inputs = TestDataGenerator.generateInputs(model);
// 2. 执行双路推理
const results = await Promise.all(
inputs.map(input => InferenceComparator.run(model, input))
);
// 3. 分析误差
const errorReport = ErrorAnalyzer.generateReport(results);
// 4. 验证精度要求
return AccuracyValidator.check(
errorReport,
model.precisionRequirements
);
}
5.2 误差阈值检查
// accuracy-validator.ets
class AccuracyValidator {
static check(report: ErrorReport, requirements: PrecisionReq): boolean {
const pass = [
report.maxAbsolute <= requirements.maxAbsoluteError,
report.maxRelative <= requirements.maxRelativeError,
report.errorHistogram[0] >= requirements.exactMatchRatio * report.total
];
return pass.every(Boolean);
}
}
6. 可视化分析
6.1 误差热力图
// error-heatmap.ets
@Component
struct ErrorHeatmap {
@Prop diff: Tensor;
build() {
Canvas() {
ForEach(this.dumpMatrix(), (row, i) => {
ForEach(row, (value, j) => {
Rect({
width: 10,
height: 10,
fill: this.getColor(value)
}).position(10 * j, 10 * i)
})
})
}
}
private getColor(value: number): string {
const intensity = Math.min(255, Math.floor(value * 2550));
return `rgb(${intensity}, ${255 - intensity}, 0)`;
}
}
6.2 统计报告生成
// report-generator.ets
function generateTextReport(report: ErrorReport): string {
return `
# NPU精度测试报告
## 基础信息
- 测试模型: ${report.modelName}
- NPU型号: ${report.npuType}
- 测试时间: ${new Date().toISOString()}
## 误差统计
- 最大绝对误差: ${report.maxAbsolute.toExponential(2)}
- 平均绝对误差: ${report.avgAbsolute.toExponential(2)}
- 最大相对误差: ${(report.maxRelative * 100).toFixed(2)}%
- 平均相对误差: ${(report.avgRelative * 100).toFixed(2)}%
## 误差分布
${Object.entries(report.errorHistogram)
.map(([range, count]) => `- ${range}: ${count}个`)
.join('\n')}
`;
}
7. 高级分析功能
7.1 逐层误差分析
// layer-wise.ets
class LayerwiseAnalyzer {
static async analyze(model: Model, input: Tensor) {
const cpuLayers = await Profiler.traceCPU(model, input);
const npuLayers = await Profiler.traceNPU(model, input);
return cpuLayers.map((cpu, i) => ({
layerName: cpu.name,
...ErrorAnalyzer.calculateErrorDistribution(
cpu.output,
npuLayers[i].output
)
}));
}
}
7.2 数值稳定性测试
// stability-test.ets
class NumericalStability {
static test(model: Model) {
const smallInput = tensorFill(model.inputShape, 1e-6);
const largeInput = tensorFill(model.inputShape, 1e6);
return Promise.all([
InferenceComparator.run(model, smallInput),
InferenceComparator.run(model, largeInput)
]).then(([small, large]) => ({
smallInputError: small.diff,
largeInputError: large.diff
}));
}
}
8. 关键指标定义
| 指标名称 | 计算公式 | 合格标准 | ||||
|---|---|---|---|---|---|---|
| 最大绝对误差 | max | CPU-NPU | ≤1e-3 | |||
| 平均绝对误差 | mean | CPU-NPU | ≤5e-4 | |||
| 最大相对误差 | max( | CPU-NPU | / | CPU | ) | ≤5% |
| 误差分布峰度 | 误差直方图统计 | 90%误差<0.1% |
9. 完整测试示例
9.1 模型精度验证
// model-test.ets
describe('MobileNetV3 NPU精度测试', () => {
const model = await ModelLoader.load('mobilenet_v3_small');
it('应满足浮点误差要求', async () => {
const report = await runPrecisionTest(model);
expect(report.maxAbsolute).toBeLessThan(1e-3);
expect(report.maxRelative).toBeLessThan(0.05);
});
it('小数值输入应稳定', async () => {
const { smallInputError } = await NumericalStability.test(model);
expect(smallInputError.maxRelative).toBeLessThan(0.1);
});
});
9.2 CI集成配置
# .github/workflows/npu-test.yml
jobs:
npu-precision:
runs-on: harmonyos-npu
steps:
- uses: harmonyos/model-test-action@v1
with:
model: mobilenet_v3_small
precision: fp16
tolerance: 0.001
- name: Upload Report
uses: actions/upload-artifact@v3
with:
name: npu-precision-report
path: report.json
10. 扩展测试场景
10.1 混合精度测试
// mixed-precision.ets
describe('混合精度模式', () => {
const modes = ['FP16', 'FP16-INT8', 'INT8'];
modes.forEach(mode => {
it(`模式 ${mode} 应满足误差要求`, async () => {
NPUConfig.setPrecisionMode(mode);
const report = await runPrecisionTest(model);
expect(report.maxRelative).toBeLessThan(mode === 'INT8' ? 0.1 : 0.05);
});
});
});
10.2 温度影响测试
// thermal-test.ets
class ThermalImpactTest {
static async run(model: Model) {
// 升温阶段
await NPUStressTest.run(60); // 持续60秒压力测试
const hotReport = await runPrecisionTest(model);
// 冷却后
await sleep(300000); // 等待5分钟冷却
const coldReport = await runPrecisionTest(model);
return { hotReport, coldReport };
}
}
通过本方案可实现:
- 量化 NPU与CPU结果差异
- 定位 误差敏感网络层
- 验证 不同精度模式影响
- 保障 车载/医疗等高精度场景