以下为 HarmonyOS 5中3D组件FPS自动化监控的完整技术方案,包含实时帧率采集、性能分析及自动告警的代码实现:
1. 监控系统架构
2. 核心监控模块
2.1 帧数据采集
// frame-monitor.ets
class FrameMonitor {
private frameTimes: number[] = [];
private lastFrameTime = 0;
onFrameRender() {
const now = performance.now();
if (this.lastFrameTime > 0) {
this.frameTimes.push(now - this.lastFrameTime);
}
this.lastFrameTime = now;
if (this.frameTimes.length > 60) {
this.frameTimes.shift(); // 保持60帧采样窗口
}
}
}
2.2 实时FPS计算
// fps-calculator.ets
function calculateFPS(frameTimes: number[]): number {
if (frameTimes.length < 2) return 0;
const avgFrameTime = frameTimes.reduce((a, b) => a + b) / frameTimes.length;
return 1000 / avgFrameTime;
}
3. 性能红线机制
3.1 动态阈值设定
// threshold-manager.ets
class PerformanceThreshold {
private static thresholds = {
'high-end': 55, // 旗舰设备
'mid-range': 45,
'low-end': 30
};
static getThreshold(): number {
const deviceTier = DeviceInfo.getPerformanceTier();
return this.thresholds[deviceTier];
}
}
3.2 自动告警触发
// alert-system.ets
class FPSAlert {
private static cooldown = false;
static check(currentFPS: number) {
if (this.cooldown) return;
const threshold = PerformanceThreshold.getThreshold();
if (currentFPS < threshold * 0.9) { // 低于阈值90%触发
this.trigger();
this.cooldown = true;
setTimeout(() => this.cooldown = false, 5000);
}
}
private static trigger() {
PerformanceMonitor.emit('fps_drop', {
fps: currentFPS,
threshold,
frameTimes
});
}
}
4. 详细性能分析
4.1 帧耗时分解
// frame-profiler.ets
class FrameProfiler {
private stages = new Map<string, number[]>();
record(stage: string, duration: number) {
if (!this.stages.has(stage)) {
this.stages.set(stage, []);
}
this.stages.get(stage)!.push(duration);
}
getStageReport(): StageReport[] {
return Array.from(this.stages.entries()).map(([name, times]) => ({
stage: name,
avg: times.reduce((a, b) => a + b) / times.length,
max: Math.max(...times)
}));
}
}
4.2 卡顿检测
// jank-detector.ets
function detectJanks(frameTimes: number[]): JankReport[] {
const janks = [];
const JANK_THRESHOLD = 16.67 * 2; // 两倍正常帧时间
for (let i = 0; i < frameTimes.length; i++) {
if (frameTimes[i] > JANK_THRESHOLD) {
janks.push({
index: i,
duration: frameTimes[i],
timestamp: performance.now()
});
}
}
return janks;
}
5. 可视化监控面板
5.1 实时曲线绘制
// fps-chart.ets
class FPSChart {
private history: number[] = [];
update(currentFPS: number) {
this.history.push(currentFPS);
if (this.history.length > 120) {
this.history.shift();
}
this.render();
}
private render() {
const canvas = document.getElementById('fps-canvas');
const ctx = canvas.getContext('2d');
// 绘制FPS曲线
ctx.clearRect(0, 0, canvas.width, canvas.height);
this.history.forEach((fps, i) => {
const y = canvas.height - (fps / 60 * canvas.height);
ctx.lineTo(i * 2, y);
});
ctx.stroke();
}
}
5.2 性能报告生成
// report-generator.ets
function generateReport(monitor: FrameMonitor): PerformanceReport {
const fps = calculateFPS(monitor.frameTimes);
const janks = detectJanks(monitor.frameTimes);
const stages = frameProfiler.getStageReport();
return {
timestamp: new Date(),
device: DeviceInfo.getModel(),
fps,
jankFrames: janks.length,
stageAnalysis: stages,
suggestions: analyzeBottlenecks(stages)
};
}
6. 自动化测试集成
6.1 压力测试场景
// stress-test.ets
function runStressTest(scene: Scene3D) {
const fpsRecords = [];
// 逐步增加模型复杂度
for (let i = 1; i <= 10; i++) {
scene.addModel(`model_${i}.glb`);
await waitForStableFPS();
fpsRecords.push({
modelCount: i,
fps: currentFPS
});
}
return fpsRecords;
}
6.2 红线断言
// threshold-assert.ets
function assertFPS(minFPS: number) {
const current = calculateFPS(frameMonitor.frameTimes);
if (current < minFPS) {
throw new PerfAssertError(
`FPS低于阈值: ${current} < ${minFPS}`
);
}
}
7. 优化建议系统
7.1 自动诊断
// optimizer.ets
function analyzeBottlenecks(report: StageReport[]): Suggestion[] {
const suggestions = [];
if (report.find(s => s.stage === 'lighting' && s.avg > 5)) {
suggestions.push({
type: 'lighting',
advice: '减少动态光源数量',
urgency: 'high'
});
}
if (report.find(s => s.stage === 'shaders' && s.max > 10)) {
suggestions.push({
type: 'shader',
advice: '简化片段着色器复杂度',
urgency: 'medium'
});
}
return suggestions;
}
7.2 配置调优
// auto-tuner.ets
class GraphicsTuner {
static adjustQuality(currentFPS: number) {
const targetFPS = PerformanceThreshold.getThreshold();
if (currentFPS < targetFPS * 0.8) {
GraphicsSettings.lowerQuality();
} else if (currentFPS > targetFPS * 1.2) {
GraphicsSettings.raiseQuality();
}
}
}
8. 生产环境监控
8.1 采样上报
// telemetry.ets
class PerfTelemetry {
private static SAMPLE_RATE = 0.1; // 10%采样
static report(report: PerformanceReport) {
if (Math.random() < this.SAMPLE_RATE) {
Analytics.send('perf_metrics', report);
}
}
}
8.2 异常追踪
// crash-analytics.ets
function trackJankClusters(janks: JankReport[]) {
if (janks.length > 5) {
CrashAnalytics.track('jank_cluster', {
count: janks.length,
duration: janks.reduce((a, b) => a + b.duration, 0),
deviceState: DeviceInfo.getState()
});
}
}
9. 关键监控指标
| 指标 | 计算方式 | 红线阈值 |
|---|---|---|
| 平均FPS | 1000 / 平均帧时间 | < 90%目标FPS |
| 卡顿帧率 | 帧时间 > 2 * 16.67ms | > 5帧/分钟 |
| 渲染阶段耗时 | 各阶段时间占比 | 任一阶段>30% |
| 显存占用 | GPU内存使用峰值 | > 80%可用显存 |
10. 完整工作流示例
10.1 监控初始化
// setup-monitor.ets
const frameMonitor = new FrameMonitor();
const fpsChart = new FPSChart();
Scene3D.on('render', () => {
frameMonitor.onFrameRender();
fpsChart.update(calculateFPS(frameMonitor.frameTimes));
FPSAlert.check(currentFPS);
});
setInterval(() => {
PerfTelemetry.report(generateReport(frameMonitor));
}, 60000); // 每分钟上报
10.2 自动化测试
// auto-test.ets
describe('3D Scene Performance', () => {
it('应维持50FPS以上', async () => {
await loadHeavyScene();
await waitForStableFPS();
assertFPS(50);
});
it('无严重卡顿', () => {
const janks = detectJanks(frameMonitor.frameTimes);
assert(janks.length < 3, `检测到${janks.length}次卡顿`);
});
});
11. 扩展开发接口
11.1 自定义监控指标
// custom-metric.ets
interface CustomMetric {
name: string;
measure: () => number;
threshold: number;
}
function registerMetric(metric: CustomMetric) {
PerformanceMonitor.addMetric(metric);
}
11.2 插件系统
// plugin-system.ets
class PerfPlugin {
static plugins: PerfPlugin[] = [];
constructor(public onJank: (report: JankReport) => void) {}
}
function addPlugin(plugin: PerfPlugin) {
PerfPlugin.plugins.push(plugin);
}
通过本监控方案可实现:
- 实时 帧率波动检测
- 自动化 性能红线告警
- 精准定位 渲染瓶颈
- 自适应 画质调整