以下为 基于CNN的HarmonyOS 5多设备UI视觉回归测试方案,包含图像特征提取、差异检测和自适应阈值的完整实现代码:
1. 系统架构
2. 核心算法实现
2.1 轻量级CNN模型
# cnn_model.py
import tensorflow as tf
from tensorflow.keras import layers
def build_siamese_network(input_shape=(256, 256, 3)):
# 共享权重的双分支网络
base_model = tf.keras.Sequential([
layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape),
layers.MaxPooling2D(2,2),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D(2,2),
layers.Conv2D(128, (3,3), activation='relu'),
layers.GlobalAveragePooling2D()
])
# 双输入结构
input_a = layers.Input(shape=input_shape)
input_b = layers.Input(shape=input_shape)
# 特征向量
feat_a = base_model(input_a)
feat_b = base_model(input_b)
# 相似度计算
distance = layers.Lambda(lambda x: tf.norm(x[0]-x[1], axis=-1))([feat_a, feat_b])
return tf.keras.Model(inputs=[input_a, input_b], outputs=distance)
2.2 自适应差异阈值
# threshold.py
def dynamic_threshold(device_type):
# 根据设备类型调整阈值
thresholds = {
'phone': 0.15,
'tablet': 0.20,
'foldable': 0.25,
'car': 0.30
}
return thresholds.get(device_type, 0.18)
3. 测试工作流
3.1 截图预处理
# preprocess.py
import cv2
import numpy as np
def preprocess_image(img_path):
img = cv2.imread(img_path)
img = cv2.resize(img, (256, 256))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 标准化
img = img.astype('float32') / 255.0
img = (img - np.mean(img)) / np.std(img)
return img
3.2 差异检测
# diff_detector.py
def detect_visual_diff(model, base_img, test_img, device_type):
# 计算相似度得分
distance = model.predict([np.expand_dims(base_img, 0),
np.expand_dims(test_img, 0)])[0]
# 获取动态阈值
threshold = dynamic_threshold(device_type)
# 生成差异热图
diff_map = generate_diff_map(base_img, test_img)
return {
'distance': float(distance),
'passed': distance < threshold,
'diff_map': diff_map
}
4. HarmonyOS集成
4.1 设备截图采集
// screenshot.ets
import { Image } from '@ohos.multimedia.image';
async function captureComponent(component: Component): Promise<string> {
const image = await Image.create(component);
const path = `/data/storage/el2/base/cache/${Date.now()}.png`;
await image.saveToFile(path, {
format: 'png',
quality: 100
});
return path;
}
4.2 多设备测试调度
// test-runner.ets
const DEVICES = [
{ type: 'phone', id: 'P50' },
{ type: 'tablet', id: 'MatePad' },
{ type: 'foldable', id: 'MateX2' }
];
async function runVisualTests(component: Component) {
const results = [];
for (const device of DEVICES) {
const screenshot = await DeviceManager.captureOnDevice(
device.id,
component
);
const result = await VisualTester.compare(
component.baselinePath,
screenshot,
device.type
);
results.push({ device, ...result });
}
return generateReport(results);
}
5. 差异可视化
5.1 热图生成
# heatmap.py
def generate_diff_map(img1, img2):
diff = cv2.absdiff(img1, img2)
diff = cv2.cvtColor(diff, cv2.COLOR_RGB2GRAY)
# 二值化
_, threshold = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)
# 生成彩色热图
heatmap = cv2.applyColorMap(threshold, cv2.COLORMAP_JET)
return cv2.addWeighted(heatmap, 0.7, img1, 0.3, 0)
5.2 测试报告
// report.ets
function generateVisualReport(results: TestResult[]): string {
return `
# 视觉回归测试报告
## 测试组件: ${results[0].component}
${results.map(r => `
### ${r.device.type} (${r.device.id})
- 相似度得分: ${r.distance.toFixed(3)}
- 结果: ${r.passed ? '✅ 通过' : '❌ 失败'}

`).join('\n')}
`;
}
6. 模型训练优化
6.1 数据增强
# augment.py
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
6.2 迁移学习
# transfer_learning.py
base_model = tf.keras.applications.MobileNetV2(
input_shape=(256, 256, 3),
include_top=False,
weights='imagenet'
)
# 冻结基础层
base_model.trainable = False
# 添加自定义头
model = tf.keras.Sequential([
base_model,
layers.GlobalAveragePooling2D(),
layers.Dense(128, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
7. 性能优化
7.1 设备端推理
// nn-inference.ets
import { NeuralNetwork } from '@ohos.ai.nn';
async function runOnDevice(model: ArrayBuffer, img1: Image, img2: Image) {
const nn = await NeuralNetwork.load(model);
const input = preprocessImages(img1, img2);
const output = await nn.run(input);
return output[0];
}
7.2 缓存机制
// cache.ets
class FeatureCache {
private static cache = new Map<string, Float32Array>();
static async getFeatures(imgPath: string): Promise<Float32Array> {
if (this.cache.has(imgPath)) {
return this.cache.get(imgPath)!;
}
const features = await extractFeatures(imgPath);
this.cache.set(imgPath, features);
return features;
}
}
8. 完整测试示例
8.1 定义测试组件
// button-test.ets
@Component
struct TestButton {
build() {
Button('Submit')
.width(100)
.height(40)
.backgroundColor('#007DFF')
}
}
8.2 执行视觉测试
// visual-test.ets
describe('按钮组件视觉一致性', () => {
const button = new TestButton();
DEVICES.forEach(device => {
it(`在${device.id}上渲染一致`, async () => {
const result = await VisualTester.compare(
'baseline/button.png',
await captureOnDevice(device.id, button),
device.type
);
expect(result.passed).toBeTruthy();
});
});
});
9. 关键性能指标
| 指标 | 目标值 | 测量方法 |
|---|---|---|
| 单次推理耗时 | <50ms | 设备端计时 |
| 准确率 | >95% | 测试集验证 |
| 内存占用 | <30MB | 内存分析工具 |
| 多设备覆盖 | 100%主流设备 | 设备矩阵测试 |
10. 扩展功能
10.1 动态基线更新
// baseline-updater.ets
async function updateBaseline(component: Component) {
const newBaseline = await captureComponent(component);
for (const device of DEVICES) {
const screenshot = await captureOnDevice(device.id, component);
if (await validateAsBaseline(screenshot)) {
fs.copy(screenshot, `baselines/${device.type}/${component.name}.png`);
}
}
}
10.2 视觉差异分类
# diff_classifier.py
def classify_diff(diff_map):
# 使用CNN分类差异类型
model = load_model('diff_classifier.h5')
classes = ['颜色偏移', '布局错位', '文字渲染', '无实质差异']
pred = model.predict(np.expand_dims(diff_map, 0))
return classes[np.argmax(pred)]
11. 部署方案
11.1 模型量化部署
# 转换TensorFlow模型为HarmonyOS格式
tf2harmony --model visual_model.h5 --out-dir ./model --quantize
11.2 CI/CD集成
# .github/workflows/visual-test.yml
jobs:
visual-regression:
runs-on: ubuntu-latest
steps:
- uses: harmonyos/visual-test-action@v1
with:
devices: "phone,tablet,foldable"
threshold: 0.2
通过本方案可实现:
- 像素级 视觉差异检测
- 跨设备 渲染一致性验证
- 智能 差异分类
- 自动化 基线维护