以下为 HarmonyOS 5 CodeGenie AI结对编程协作模式的完整技术方案,包含实时建议生成、决策融合和上下文感知的代码级实现:
1. 协作架构设计
2. 核心协作模块
2.1 实时建议监听器
// suggestion-listener.ets
class CodeListener {
private static lastCursorPos = 0;
static setup() {
editor.onDidChangeCursorPosition(pos => {
if (Math.abs(pos - this.lastCursorPos) > 5) {
this.lastCursorPos = pos;
SuggestionEngine.triggerAt(pos);
}
});
}
}
2.2 上下文感知器
// context-collector.ets
function getCodeContext(): CodeContext {
return {
fileType: editor.activeFile?.type,
imports: parseImports(editor.activeText),
nearbyCode: extractSurroundingCode(50), // 前后50行
projectType: detectProjectType()
};
}
3. 建议生成策略
3.1 智能补全生成
// completion-generator.ets
class CompletionEngine {
static async generate(pos: Position): Promise<Suggestion[]> {
const context = getCodeContext();
const prefix = getPrefixAtPos(pos);
return AI.predictCompletions({
prefix,
context,
strategy: 'incremental'
});
}
}
3.2 错误修复建议
// error-fixer.ets
class ErrorFixer {
static async suggestFixes(error: Error): Promise<FixSuggestion> {
const similarFixes = await FixDB.querySimilar(error.message);
const aiFixes = await AI.generateFixes(error.stack);
return this.rankSuggestions([...similarFixes, ...aiFixes]);
}
}
4. 决策仲裁机制
4.1 开发者偏好学习
// preference-learner.ets
class PreferenceModel {
private static choices = new Map<string, number>();
static recordChoice(suggestion: Suggestion, accepted: boolean) {
const key = `${suggestion.type}-${suggestion.contentHash}`;
this.choices.set(key, accepted ? 1 : -1);
}
static shouldSuggest(suggestion: Suggestion): boolean {
const key = `${suggestion.type}-${suggestion.contentHash}`;
return (this.choices.get(key) ?? 0) >= 0;
}
}
4.2 建议优先级排序
// suggestion-ranker.ets
function rankSuggestions(suggestions: Suggestion[]): Suggestion[] {
return suggestions
.filter(s => PreferenceModel.shouldSuggest(s))
.sort((a, b) => {
const aScore = calculateRelevanceScore(a);
const bScore = calculateRelevanceScore(b);
return bScore - aScore;
});
}
5. 智能合并策略
5.1 代码差异合并
// code-merger.ets
class SmartMerger {
static merge(base: string, suggestion: string): string {
const diff = createPatch('suggestion', base, suggestion);
return applyPatch(base, diff, {
fuzzFactor: 0.3 // 允许30%模糊匹配
});
}
}
5.2 冲突解决
// conflict-resolver.ets
function resolveConflict(original: string, aiSuggestion: string): string {
const conflicts = detectConflicts(original, aiSuggestion);
return conflicts.reduce((code, conflict) => {
return keepOriginal(code, conflict.range);
}, aiSuggestion);
}
6. 开发者交互设计
6.1 建议展示组件
// suggestion-ui.ets
@Component
struct SuggestionView {
@Prop suggestions: Suggestion[];
build() {
Column() {
ForEach(this.suggestions, (suggestion) => {
SuggestionCard({
suggestion,
onAccept: () => acceptSuggestion(suggestion),
onReject: () => rejectSuggestion(suggestion)
})
})
}
}
}
6.2 键盘快捷操作
// keybindings.ets
Keybindings.register({
key: 'Tab',
when: 'suggestionVisible',
handler: (ctx) => {
const topSuggestion = getTopSuggestion();
acceptSuggestion(topSuggestion);
}
});
7. 实时协作示例
7.1 开发者输入
// 开发者输入
function calculate(a: number, b: number): number {
return a +
// 光标停在此处
}
7.2 AI建议生成
// 生成的建议列表
[
{
type: 'completion',
content: 'b',
confidence: 0.95
},
{
type: 'method',
content: 'multiply(a, b)',
confidence: 0.82
}
]
7.3 决策合并结果
// 最终代码
function calculate(a: number, b: number): number {
return a + b
}
8. 上下文保持机制
8.1 会话历史管理
// session-manager.ets
class CodingSession {
private static history: SessionEvent[] = [];
static record(event: SessionEvent) {
this.history.push(event);
if (this.history.length > 20) {
this.history.shift();
}
}
static getContext(): SessionContext {
return {
lastEvents: this.history.slice(-3),
projectState: getProjectState()
};
}
}
8.2 长期记忆存储
// memory-manager.ets
class DeveloperMemory {
static async recall(key: string): Promise<any> {
return Database.query('developer_memory', {
developerId: currentUser.id,
key
});
}
static async memorize(key: string, value: any) {
await Database.insert('developer_memory', {
developerId: currentUser.id,
key,
value: JSON.stringify(value)
});
}
}
9. 性能优化策略
9.1 建议缓存
// suggestion-cache.ets
class SuggestionCache {
private static cache = new LRUCache<string, Suggestion[]>(100);
static get(key: string): Suggestion[] | null {
return this.cache.get(key);
}
static set(key: string, value: Suggestion[]) {
this.cache.set(key, value);
}
}
9.2 节流控制
// throttler.ets
class SuggestionThrottler {
private static lastTrigger = 0;
static canTrigger(): boolean {
const now = Date.now();
const delay = now - this.lastTrigger;
this.lastTrigger = now;
return delay > 500; // 500ms冷却
}
}
10. 调试与分析工具
10.1 决策日志
// decision-logger.ets
class DecisionLogger {
static logDecision(
suggestion: Suggestion,
action: 'accept' | 'reject'
) {
console.table({
timestamp: new Date(),
suggestionHash: hashSuggestion(suggestion),
action,
context: getCodeContext()
});
}
}
10.2 性能分析
# 启动建议性能监控
codegenie-monitor --metric latency --threshold 200ms
11. 扩展开发接口
11.1 自定义建议器
// custom-suggester.ets
interface CustomSuggester {
name: string;
trigger: RegExp;
suggest: (context: CodeContext) => Promise<Suggestion[]>;
}
SuggestionEngine.register({
name: 'api-suggester',
trigger: /fetch(['"]/,
suggest: async (ctx) => {
return APIRecommendation.get(ctx.nearbyCode);
}
});
11.2 外部工具集成
// plugin-integration.ets
class ExternalToolAdapter {
static async importSuggestions(tool: string) {
const adapter = getAdapter(tool);
return adapter.fetchSuggestions();
}
}
12. 完整工作流示例
12.1 初始化配置
// init.ets
function setupPairProgramming() {
CodeListener.setup();
PreferenceModel.load();
SuggestionEngine.init({
maxSuggestions: 3,
responseTime: 200
});
}
12.2 实时协作循环
// event-loop.ets
editor.onDidChangeText(e => {
if (SuggestionThrottler.canTrigger()) {
const context = getCodeContext();
const suggestions = await SuggestionEngine.generate(e.position);
showSuggestions(rankSuggestions(suggestions));
}
});
13. 关键性能指标
| 指标 | 目标值 | 测量方式 |
|---|---|---|
| 建议延迟 | <200ms | 输入到展示时间 |
| 接受率 | >65% | 接受数/总建议数 |
| 决策耗时 | <300ms | 建议展示到操作时间 |
| 内存占用 | <300MB | 建议缓存内存消耗 |
14. 安全与隐私
14.1 代码脱敏处理
// code-sanitizer.ets
function sanitizeForAI(code: string): string {
return code.replace(
/password\s*=\s*['"].+?['"]/g,
'password="******"'
);
}
14.2 本地化处理
// local-processing.ets
class LocalAI {
static processSensitive(context: CodeContext): Promise<Suggestion[]> {
if (containsSensitiveData(context)) {
return this.localModel.predict(context);
}
return CloudAI.predict(context);
}
}
通过本方案可实现:
- 200ms内 智能建议响应
- 上下文感知 的精准推荐
- 可解释 的决策过程
- 无缝 开发者工作流集成