以下为 基于AGC Performance实现HarmonyOS 5应用冷启动百分位分析的完整ArkTS解决方案,包含数据采集、统计分析和可视化展示的代码示例:
1. 看板架构设计
2. 数据采集配置
2.1 冷启动埋点
// startup-tracker.ets
import { Performance } from '@hw-agconnect/performance';
export function trackColdStart() {
const startMark = 'cold_start_begin';
const endMark = 'cold_start_end';
Performance.mark(startMark);
App.onReady(() => {
Performance.mark(endMark);
Performance.measure('cold_start', startMark, endMark);
const duration = Performance.getEntriesByName('cold_start')[0].duration;
Performance.log('cold_start', {
duration,
device: Device.getTier(),
osVersion: Device.getOSVersion()
});
});
}
2.2 关键阶段标记
// stage-marker.ets
export function markCriticalStages() {
const stages = {
'load_asset': '资源加载',
'init_sdk': 'SDK初始化',
'first_render': '首帧渲染'
};
Object.keys(stages).forEach(key => {
Performance.mark(`${key}_start`);
Performance.mark(`${key}_end`);
Performance.measure(key, `${key}_start`, `${key}_end`);
});
}
3. 百分位分析
3.1 数据聚合
// percentile-calculator.ets
export function calculatePercentiles(data: number[]) {
data.sort((a, b) => a - b);
return {
p50: data[Math.floor(data.length * 0.5)],
p90: data[Math.floor(data.length * 0.9)],
p99: data[Math.floor(data.length * 0.99)],
min: data[0],
max: data[data.length - 1]
};
}
export async function getColdStartStats() {
const rawData = await Performance.query({
name: 'cold_start',
period: '24h',
filters: { version: AppConfig.version }
});
return calculatePercentiles(rawData.map(x => x.duration));
}
3.2 设备分级统计
// device-tier.ets
export async function analyzeByDeviceTier() {
const tiers = ['low', 'mid', 'high'];
const results = {};
for (const tier of tiers) {
const data = await Performance.query({
name: 'cold_start',
filters: {
deviceTier: tier,
period: '7d'
}
});
results[tier] = calculatePercentiles(data.map(x => x.duration));
}
return results;
}
4. 可视化看板
4.1 百分位趋势图
// percentile-chart.ets
@Component
struct PercentileChart {
@State stats: PercentileStats;
build() {
LineChart({
series: [
{ name: 'P50', data: this.stats.p50 },
{ name: 'P90', data: this.stats.p90 },
{ name: 'P99', data: this.stats.p99 }
],
xAxis: '日期',
yAxis: '耗时(ms)'
})
}
}
4.2 设备对比热力图
// heatmap.ets
@Component
struct DeviceHeatmap {
@State tierData: Record<string, PercentileStats>;
build() {
HeatmapChart({
data: Object.entries(this.tierData).map(([tier, stats]) => ({
tier,
p50: stats.p50,
p90: stats.p90,
p99: stats.p99
})),
xAxis: '设备等级',
yAxis: '百分位'
})
}
}
5. 自动化报警
5.1 阈值检测
// alert-manager.ets
export async function checkThresholds() {
const current = await getColdStartStats();
const baseline = await getBaseline();
if (current.p99 > baseline.p99 * 1.2) {
Alert.send('P99冷启动耗时上涨20%', {
current: current.p99,
baseline: baseline.p99
});
}
}
5.2 版本对比
// version-comparator.ets
export async function compareVersions(v1: string, v2: string) {
const [data1, data2] = await Promise.all([
Performance.query({ version: v1 }),
Performance.query({ version: v2 })
]);
return {
v1: calculatePercentiles(data1),
v2: calculatePercentiles(data2),
diff: {
p50: (data2.p50 - data1.p50) / data1.p50,
p90: (data2.p90 - data1.p90) / data1.p90,
p99: (data2.p99 - data1.p99) / data1.p99
}
};
}
6. 优化建议生成
6.1 瓶颈分析
// bottleneck-finder.ets
export async function findBottlenecks() {
const stages = await Performance.getEntriesByType('stage');
const percentiles = calculatePercentiles(stages.map(s => s.duration));
return stages
.filter(s => s.duration > percentiles.p90)
.sort((a, b) => b.duration - a.duration);
}
6.2 智能建议
// optimizer.ets
export function generateSuggestions(bottlenecks: StageEntry[]) {
return bottlenecks.map(b => {
switch (b.name) {
case 'load_asset':
return {
action: '启用资源预加载',
impact: '预计减少30%耗时'
};
case 'init_sdk':
return {
action: '延迟非必要SDK初始化',
impact: '预计减少50%耗时'
};
default:
return {
action: '代码性能分析',
impact: '需进一步诊断'
};
}
});
}
7. 完整工作流示例
7.1 每日报表生成
// daily-report.ets
async function generateDailyReport() {
const [overall, byTier, bottlenecks] = await Promise.all([
getColdStartStats(),
analyzeByDeviceTier(),
findBottlenecks()
]);
return {
date: new Date().toISOString().split('T')[0],
overall,
byTier,
suggestions: generateSuggestions(bottlenecks)
};
}
7.2 CI/CD集成
# .github/workflows/performance-check.yml
name: Performance Gate
on: [push]
jobs:
analyze:
runs-on: ubuntu-latest
steps:
- uses: huawei/agc-perf-check@v1
with:
metric: cold_start
threshold-p99: 2000
threshold-p90: 1500
8. 关键指标说明
| 指标 | 定义 | 达标标准 |
|---|---|---|
| P50 | 50%用户启动耗时 | <1000ms |
| P90 | 90%用户启动耗时 | <1500ms |
| P99 | 99%用户启动耗时 | <2000ms |
| Δ | 版本间变化幅度 | <±10% |
9. 高级功能扩展
9.1 用户分群分析
// user-segment.ets
export async function analyzeByUserSegment() {
const segments = await UserSegment.getAll();
const results = {};
for (const segment of segments) {
const data = await Performance.query({
name: 'cold_start',
filters: { segment: segment.id }
});
results[segment.name] = calculatePercentiles(data);
}
return results;
}
9.2 多维下钻分析
// drill-down.ets
export async function drillDownAnalysis(dimensions: string[]) {
return Performance.analyze({
metric: 'cold_start',
breakdown: dimensions,
period: '30d'
});
}
// 使用示例
drillDownAnalysis(['osVersion', 'deviceTier', 'region']);
10. 示例看板效果
// dashboard.ets
@Component
struct ColdStartDashboard {
@State overall: PercentileStats;
@State byTier: Record<string, PercentileStats>;
aboutToAppear() {
this.loadData();
}
async loadData() {
[this.overall, this.byTier] = await Promise.all([
getColdStartStats(),
analyzeByDeviceTier()
]);
}
build() {
Column() {
PercentileChart({ stats: this.overall })
DeviceHeatmap({ tierData: this.byTier })
OptimizationSuggestions()
}
}
}
通过本方案可实现:
- 毫秒级 冷启动耗时监控
- 多维下钻 性能分析
- 智能 瓶颈定位
- 自动化 质量门禁