什么是数据湖仓一体

74 阅读2分钟

1. 引言

预测广告点击率(CTR)是在线广告系统中的一个关键任务。标题和图片是影响CTR的重要因素。以下教程将展示如何使用高级方法结合标题和图片特征来预测CTR。

2. 环境准备

首先,确保你已经安装了必要的Python库:

pip install pandas numpy scikit-learn xgboost transformers torch torchvision

3. 数据准备

假设你有一个包含广告标题、图片和点击数据的数据集,名为ad_data.csv。数据集的结构如下:

  • 标题 (title)
  • 图片路径 (image_path)
  • 点击标签 (clicked)

4. Python代码示例

以下代码示例展示了如何使用BERTSwin Transformer结合标题和图片特征来预测CTR:

import pandas as pd
import torch
from transformers import BertTokenizer, BertModel
from torchvision import models, transforms
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.optim as optim

# 加载数据集
data = pd.read_csv('ad_data.csv')

# 定义数据集类
class AdDataset(Dataset):
    def __init__(self, data, tokenizer, transform):
        self.data = data
        self.tokenizer = tokenizer
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        title = self.data.iloc[idx, 0]
        image_path = self.data.iloc[idx, 1]
        clicked = self.data.iloc[idx, 2]

        # 处理标题
        inputs = self.tokenizer(title, return_tensors='pt', max_length=512, padding='max_length', truncation=True)
        title_ids = inputs['input_ids'].squeeze()
        attention_mask = inputs['attention_mask'].squeeze()

        # 处理图片
        image = Image.open(image_path)
        image = self.transform(image)
        image = image.unsqueeze(0)

        return {
            'title_ids': title_ids,
            'attention_mask': attention_mask,
            'image': image,
            'clicked': torch.tensor(clicked, dtype=torch.long)
        }

# 初始化BERT和Swin模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
bert_model = BertModel.from_pretrained('bert-base-uncased')
swin_model = models.swin_bert_tiny(weights='IMAGENET1K_V1')

# 定义自定义模型
class AdModel(nn.Module):
    def __init__(self):
        super(AdModel, self).__init__()
        self.bert = bert_model
        self.swin = swin_model
        self.dropout = nn.Dropout(0.1)
        self.fc = nn.Linear(768 + 768, 2)

    def forward(self, title_ids, attention_mask, image):
        title_features = self.bert(title_ids, attention_mask=attention_mask).pooler_output
        image_features = self.swin(image).flatten()
        combined_features = torch.cat((title_features, image_features), dim=1)
        output = self.dropout(combined_features)
        output = self.fc(output)
        return output

# 初始化数据集和数据加载器
dataset = AdDataset(data, tokenizer, transform)
batch_size = 32
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 训练模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AdModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-5)

for epoch in range(5):
    model.train()
    total_loss = 0
    for batch in data_loader:
        title_ids = batch['title_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        image = batch['image'].to(device)
        clicked = batch['clicked'].to(device)

        optimizer.zero_grad()

        outputs = model(title_ids, attention_mask, image)
        loss = criterion(outputs, clicked)

        loss.backward()
        optimizer.step()

        total_loss += loss.item()
    print(f'Epoch {epoch+1}, Loss: {total_loss / len(data_loader)}')

# 评估模型
model.eval()
with torch.no_grad():
    total_correct = 0
    for batch in data_loader:
        title_ids = batch['title_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        image = batch['image'].to(device)
        clicked = batch['clicked'].to(device)

        outputs = model(title_ids, attention_mask, image)
        _, predicted = torch.max(outputs, dim=1)
        total_correct += (predicted == clicked).sum().item()

    accuracy = total_correct / len(data)
    print(f'Test Accuracy: {accuracy:.4f}')

5. 总结

通过结合BERT和Swin Transformer处理标题和图片特征,可以显著提高CTR预测的准确性。这种方法利用多模态特征融合技术,能够更好地捕捉用户的偏好和行为。

案例示例

  • CTR驱动的广告图像生成:利用多模态大语言模型生成CTR优化的广告图像,可以提高广告的点击率
  • 深度CTR预测模型:使用深度神经网络直接从原始图像像素和其他特征预测CTR,提高了预测的准确性