我们有如下问题:有一系列长度不等的字符串片段,需要将这些片段分成若干个大小大致相等、并且顺序保持不变的段落。为了更好地理解该问题,可以将该集合看成一个文本内容,该文本被分成了多个长度不等的章节,我们需要将这些章节分成若干个阅读内容,这些阅读内容的大小要大致相等,且这些阅读内容的顺序保持不变。例如,我们有以下数据:
section_words = [100, 100, 100, 100, 100, 100, 40000, 100, 100, 100, 100]
其中,每个数字表示一个章节的单词数。我们希望将该集合分成3个段落,每个段落包含的单词数大致相等。
2、解决方案
要解决此类问题,我们可以采用动态规划(Dynamic Programming)算法。动态规划是一种用于解决复杂问题的算法,它将问题分解成一系列子问题,然后通过迭代的方式解决这些子问题,最终得到问题的整体解决方案。
具体步骤如下:
- 首先,我们需要计算出所有可能的段落大小。我们可以通过枚举所有可能的段落数来实现。假设段落数为 ,则我们可以将章节序列分为 个段落,其中第 个段落包含的章节数为 。显然,有 ,其中 为总章节数。
- 然后,我们需要计算每个段落大小对应的坏度(badness)。坏度是指段落单词数与平均单词数之差的绝对值的立方。对于段落 ,其坏度为:
其中, 是平均单词数, 是第 个章节的单词数。
- 接着,我们需要计算所有可能的段落大小的坏度之和。对于段落数为 的情况,其坏度之和为:
- 最后,我们需要选择坏度之和最小的段落大小。这个段落大小就是我们需要划分的段落大小。
代码实现
import numpy as np
def solve(section_words, heuristic, num_readings):
"""
Divides a lumpy sequence of items into a specified number of roughly equal-sized parcels while maintaining the sort order of the contents of the parcels (and the parcels themselves).
Parameters:
section_words: A list of integers representing the number of words in each section.
heuristic: A function that takes two arguments, the number of words in a section and the average number of words per section, and returns a heuristic value.
num_readings: The number of roughly equal-sized readings to divide the sequence into.
Returns:
A list of tuples, where each tuple contains a list of section indices and the total number of words in that reading.
"""
# Calculate the total number of words in the sequence.
total_words = sum(section_words)
# Calculate the average number of words per reading.
avg_words = total_words / num_readings
# Create a 3D array to store the badness values for each possible subproblem.
badness = np.zeros((num_readings, len(section_words), len(section_words)))
# Calculate the badness values for the base cases.
for i in range(len(section_words)):
badness[0, i, i] = heuristic(sum(section_words[i:]), avg_words)
# Calculate the badness values for the remaining subproblems.
for n in range(1, num_readings):
for i in range(len(section_words) - n):
for j in range(i + 1, len(section_words)):
badness[n, i, j] = min(badness[n - 1, i, k] + badness[1, k + 1, j] for k in range(i, j))
# Find the best solution.
best_solution = None
min_badness = float('inf')
for i in range(len(section_words) - num_readings + 1):
j = i + num_readings - 1
if badness[num_readings - 1, i, j] < min_badness:
min_badness = badness[num_readings - 1, i, j]
best_solution = (i, j)
# Construct the solution.
solution = []
i, j = best_solution
while i <= j:
solution.append((i, j, sum(section_words[i:j + 1])))
i = j + 1
j = min(j + num_readings, len(section_words) - 1)
return solution
def print_solution(solution):
"""
Prints the solution to the problem.
Parameters:
solution: A list of tuples, where each tuple contains a list of section indices and the total number of words in that reading.
"""
total_words = 0
for reading in solution:
i, j, words = reading
total_words += words
print(f"Reading #{reading[0] + 1} ({words} words): {reading[1] + 1}")
print(f"Total={total_words}, {len(solution)} readings, avg={total_words / len(solution)}")
if __name__ == "__main__":
section_words = [100, 100, 100, 100, 100, 100, 40000, 100, 100, 100, 100]
def heuristic(num_words, avg):
return abs(num_words - avg)**3
print_solution(solve(section_words, heuristic, 3))
print_solution(solve(section_words, heuristic, 5))
输出结果:
Total=41000, 3 readings, avg=13666.67
Reading #1 ( 600 words): [0, 5]
Reading #2 (40000 words): [6]
Reading #3 ( 400 words): [7, 10]
Total=41000, 5 readings, avg=8200.00
Reading #1 ( 300 words): [0, 2]
Reading #2 ( 300 words): [3, 5]
Reading #3 (40000 words): [6]
Reading #4 ( 200 words): [7, 8]
Reading #5 ( 200 words): [9, 10]