题目
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向后跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
题解
方式一:贪心
反向查找
复杂度:O(n^2)
public int jump(int[] nums) {
int target = nums.length - 1; // 目标下标
int step = 0;
while (target > 0) {
// 从左往右遍历保证找到距离目标下标最远的位置
for (int i = 0; i < target; i++) {
if (nums[i] + i >= target) {
// 更新目标下标
target = i;
// 步数加一
step++;
break;
}
}
}
return step;
}
方式二:贪心
正向查找
复杂度:O(n)
public int jump(int[] nums) {
int step = 0;
int maxPosition = 0; // 下一步能到的最远位置
int end = 0; // 这一步能到的最远位置
for (int i = 0; i < nums.length - 1; i++) {
maxPosition = Math.max(maxPosition, nums[i] + i);
// 当遍历完这一步能到的最远位置后
if (i == end) {
// 刷新下一步能到的最远位置
end = maxPosition;
step++;
}
}
return step;
}
总结
算法:贪心