第一阶段:基础攻坚(Day 1-7)
Day 1-2:环境搭建与PyTorch速成
- 任务清单:
- 安装Anaconda,创建虚拟环境(Python 3.8+):
conda create -n vlm python=3.8
conda activate vlm
- 安装PyTorch(带CUDA,版本根据你的显卡驱动选择):
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
- 验证GPU是否可用:
import torch
print(torch.cuda.is_available())
- 完成PyTorch官方教程中的【60分钟闪电战】:
Day 3-4:CLIP论文精读与实战
- 上午(论文精读):
- 打印CLIP论文,用彩笔标注:
- 重点标注:图2(模型架构)、4.1节(训练方法)
- 核心问题:为什么对比学习能对齐图文?
- 写两页笔记,总结:
- 关键创新点:对比损失函数、Web规模数据
- 缺点:对抽象概念(如“爱情”)处理不佳
- 下午(代码实战):
- 安装OpenAI CLIP:
pip install git+https://github.com/openai/CLIP.git
- 跑通官方示例(零样本分类):
import clip
model, preprocess = clip.load("ViT-B/32", device="cuda")
image = preprocess(Image.open("dog.jpg")).unsqueeze(0).to("cuda")
text = clip.tokenize(["a dog", "a cat"]).to("cuda")
with torch.no_grad():
logits_per_image, _ = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probabilities:", probs)
Day 5-7:Transformer与ViT深入
- 关键代码解剖:
- 手写ViT的Patch Embedding层(不用框架):
def patch_embedding(image, patch_size=16):
patches = image.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
patches = patches.contiguous().view(1, -1, 3*patch_size*patch_size)
return patches
- 用HuggingFace跑ViT推理:
from transformers import ViTImageProcessor, ViTForImageClassification
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
第二阶段:核心模型突破(Day 8-21)
Day 8-10:SAM模型解剖
- 代码级精读:
- 下载SAM官方代码并安装:
git clone https://github.com/facebookresearch/segment-anything
cd segment-anything
pip install -e .
- 重点阅读:
sam/modeling/sam.py:看Sam类如何集成image encoder/mask decoder
sam/predictor.py:理解SamPredictor的交互逻辑
- 制作自己的数据集标注:
from segment_anything import SamAutomaticMaskGenerator
mask_generator = SamAutomaticMaskGenerator(model)
masks = mask_generator.generate("your_image.jpg")
Day 11-14:Grounding DINO实战
- 关键步骤:
- 安装依赖(注意版本匹配):
pip install groundingdino-py==0.1.0
- 运行文本引导检测:
from groundingdino.util.inference import load_model, predict
model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
boxes, logits, phrases = predict(
model=model,
image=image,
caption="a red car",
box_threshold=0.3,
text_threshold=0.25
)
Day 15-21:BLIP/VLM高级应用
- 实战项目:
- 用BLIP-2实现图像对话:
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
inputs = processor(images=image, text="Question: What is in this image? Answer:", return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
- 必做调试:
- 尝试更换prompt(如"Describe the image in detail")
- 对比BLIP-2和LLaVA的输出差异
第三阶段:整合项目(Day 22-30)
终极项目:文本引导的精细分割
def text_driven_segmentation(image_path, text_prompt):
boxes, _, _ = predict(model=gd_model, image=image, caption=text_prompt)
sam_predictor.set_image(image)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
masks, _, _ = sam_predictor.predict_torch(boxes=transformed_boxes)
crop = image.crop(boxes[0])
clip_scores = clip_model(crop, ["object", "background"])
return masks[clip_scores.argmax() == 0]
关键避坑指南
- CUDA内存不足:
- 在PyTorch加载模型时加
.half()用FP16精度
- 测试时加
with torch.inference_mode():
- 数据集路径问题:
- 所有路径建议用
pathlib.Path处理(避免/和\混用)
- 模型权重下载:
- SAM的
vit_h权重需手动下载(官方提供wget命令)
验收标准(30天后)