AI研0,保姆级学习路线(个人向)

129 阅读3分钟

第一阶段:基础攻坚(Day 1-7)

Day 1-2:环境搭建与PyTorch速成

  • 任务清单
    1. 安装Anaconda,创建虚拟环境(Python 3.8+):
      conda create -n vlm python=3.8
      conda activate vlm
      
    2. 安装PyTorch(带CUDA,版本根据你的显卡驱动选择):
      pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
      
    3. 验证GPU是否可用:
      import torch
      print(torch.cuda.is_available())  # 必须输出True
      
    4. 完成PyTorch官方教程中的【60分钟闪电战】:

Day 3-4:CLIP论文精读与实战

  • 上午(论文精读)
    1. 打印CLIP论文,用彩笔标注:
      • 重点标注:图2(模型架构)、4.1节(训练方法)
      • 核心问题:为什么对比学习能对齐图文?
    2. 写两页笔记,总结:
      • 关键创新点:对比损失函数、Web规模数据
      • 缺点:对抽象概念(如“爱情”)处理不佳
  • 下午(代码实战)
    1. 安装OpenAI CLIP:
      pip install git+https://github.com/openai/CLIP.git
      
    2. 跑通官方示例(零样本分类):
      import clip
      model, preprocess = clip.load("ViT-B/32", device="cuda")
      image = preprocess(Image.open("dog.jpg")).unsqueeze(0).to("cuda")
      text = clip.tokenize(["a dog", "a cat"]).to("cuda")
      with torch.no_grad():
          logits_per_image, _ = model(image, text)
          probs = logits_per_image.softmax(dim=-1).cpu().numpy()
      print("Label probabilities:", probs)  # 应显示dog概率>cat
      

Day 5-7:Transformer与ViT深入

  • 关键代码解剖
    1. 手写ViT的Patch Embedding层(不用框架):
      def patch_embedding(image, patch_size=16):
          # image shape: [1, 3, 224, 224]
          patches = image.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
          patches = patches.contiguous().view(1, -1, 3*patch_size*patch_size)
          return patches  # [1, num_patches, patch_dim]
      
    2. 用HuggingFace跑ViT推理:
      from transformers import ViTImageProcessor, ViTForImageClassification
      processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
      model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
      inputs = processor(images=image, return_tensors="pt")
      outputs = model(**inputs)
      logits = outputs.logits
      

第二阶段:核心模型突破(Day 8-21)

Day 8-10:SAM模型解剖

  • 代码级精读
    1. 下载SAM官方代码并安装:
      git clone https://github.com/facebookresearch/segment-anything
      cd segment-anything
      pip install -e .
      
    2. 重点阅读:
      • sam/modeling/sam.py:看Sam类如何集成image encoder/mask decoder
      • sam/predictor.py:理解SamPredictor的交互逻辑
    3. 制作自己的数据集标注:
      from segment_anything import SamAutomaticMaskGenerator
      mask_generator = SamAutomaticMaskGenerator(model)
      masks = mask_generator.generate("your_image.jpg")
      

Day 11-14:Grounding DINO实战

  • 关键步骤
    1. 安装依赖(注意版本匹配):
      pip install groundingdino-py==0.1.0
      
    2. 运行文本引导检测:
      from groundingdino.util.inference import load_model, predict
      model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
      boxes, logits, phrases = predict(
          model=model,
          image=image,
          caption="a red car",  # 支持复杂查询如"car and person"
          box_threshold=0.3,
          text_threshold=0.25
      )
      

Day 15-21:BLIP/VLM高级应用

  • 实战项目
    1. 用BLIP-2实现图像对话:
      from transformers import Blip2Processor, Blip2ForConditionalGeneration
      processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
      model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
      inputs = processor(images=image, text="Question: What is in this image? Answer:", return_tensors="pt").to("cuda", torch.float16)
      out = model.generate(**inputs)
      print(processor.decode(out[0], skip_special_tokens=True))
      
    2. 必做调试
      • 尝试更换prompt(如"Describe the image in detail")
      • 对比BLIP-2和LLaVA的输出差异

第三阶段:整合项目(Day 22-30)

终极项目:文本引导的精细分割

# 结合CLIP+SAM+Grounding DINO
def text_driven_segmentation(image_path, text_prompt):
    # Step1: 用Grounding DINO检测物体框
    boxes, _, _ = predict(model=gd_model, image=image, caption=text_prompt)
    
    # Step2: 将检测框输入SAM生成mask
    sam_predictor.set_image(image)
    transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
    masks, _, _ = sam_predictor.predict_torch(boxes=transformed_boxes)
    
    # Step3: 用CLIP对分割区域做验证
    crop = image.crop(boxes[0])
    clip_scores = clip_model(crop, ["object", "background"])
    return masks[clip_scores.argmax() == 0]  # 只保留物体mask

关键避坑指南

  1. CUDA内存不足
    • 在PyTorch加载模型时加.half()用FP16精度
    • 测试时加with torch.inference_mode():
  2. 数据集路径问题
    • 所有路径建议用pathlib.Path处理(避免/\混用)
  3. 模型权重下载
    • SAM的vit_h权重需手动下载(官方提供wget命令)

验收标准(30天后)

  • 能徒手画出CLIP/SAM/Grounding DINO的架构图
  • 在自定义图片上实现"分割出所有透明的物体"(需结合VLM理解"透明")
  • 给导师演示一个完整pipeline(从输入文本到输出分割mask)