数学基础

112 阅读1分钟

三角函数

定义

对于任意角 α\alpha 来说,设P(x,y)P(x, y)α\alpha 终边上异于原点的任意一点,r=x2+y2r = \sqrt{x^2 + y^2}

image.png

正弦sinα=yr余弦cosα=xr正切tanα=yx余切cotα=xy正割secα=rx余割cscα=ry\begin{align} &\text 正弦 \sin\alpha = \frac y r \qquad &\text余弦 \cos\alpha = \frac x r \\ &\text 正切 \tan\alpha = \frac y x \qquad &\text余切 \cot\alpha = \frac x y \\ &\text 正割 \sec\alpha = \frac r x \qquad &\text余割 \csc\alpha = \frac r y \end{align}

为了方便,rr 一般取 1 ,我们把 r=1r = 1 的圆叫做单位圆

同角三角函数

倒数关系
cotα=1tanαsecα=1cosαcscα=1sinα\cot\alpha = \frac 1 {\tan\alpha} \qquad \sec\alpha = \frac 1 {\cos\alpha} \qquad \csc\alpha = \frac 1 {\sin\alpha}
平方关系
sin2α+cos2α=1tan2α+1=sec2αcot2α+1=csc2α\sin^2\alpha + \cos^2\alpha = 1 \qquad \tan^2\alpha + 1 = \sec^2\alpha \qquad \cot^2\alpha + 1 = \csc^2\alpha
商的关系
tanα=sinαcosα=secαcscα(正弦比余弦,正割比余割)cotα=cosαsinα=cscαsecα\tan\alpha = \frac {\sin\alpha}{\cos\alpha} = \frac {\sec\alpha}{\csc\alpha} \text(正弦比余弦,正割比余割) \qquad \cot\alpha = \frac {\cos\alpha}{\sin\alpha} = \frac {\csc\alpha}{\sec\alpha}

诱导公式

第一组

sin(α)=sinαcos(α)=cosαtan(α)=tanα\begin{align} &\sin(-\alpha) = -\sin\alpha \\ &\cos(-\alpha) = \cos\alpha \\ &\tan(-\alpha) = -\tan\alpha \end{align}

第二组

image.png

上图以 cos(πα)=cosα\cos(\pi - \alpha) = -\cos\alpha 为例

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαsin(πα)=sinαcos(πα)=cosαtan(πα)=tanαsin(2π+α)=sinαcos(2π+α)=cosαtan(2π+α)=tanαsin(2πα)=sinαcos(2πα)=cosαtan(2πα)=tanα\begin{align} &\sin(\pi + \alpha) = -\sin\alpha \qquad &\cos(\pi + \alpha) = -\cos\alpha \qquad &\tan(\pi + \alpha) = \tan\alpha \\ &\sin(\pi - \alpha) = \sin\alpha \qquad &\cos(\pi - \alpha) = -\cos\alpha \qquad &\tan(\pi - \alpha) = -\tan\alpha \\ &\sin(2\pi + \alpha) = \sin\alpha \qquad &\cos(2\pi + \alpha) = \cos\alpha \qquad &\tan(2\pi + \alpha) = \tan\alpha \\ &\sin(2\pi - \alpha) = -\sin\alpha \qquad &\cos(2\pi - \alpha) = \cos\alpha \qquad &\tan(2\pi - \alpha) = -\tan\alpha \\ \end{align}

第三组

image.png

sin(π2+α)=cosαcos(π2+α)=sinαtan(π2+α)=cotαsin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαsin(3π2+α)=cosαcos(3π2+α)=sinαtan(3π2+α)=cotαsin(3π2α)=cosαcos(3π2α)=sinαtan(3π2α)=cotα\begin{align} &\sin(\frac \pi 2 + \alpha) = \cos\alpha \qquad &\cos(\frac \pi 2 + \alpha) = -\sin\alpha \qquad &\tan(\frac \pi 2 + \alpha) = -\cot\alpha \\ &\sin(\frac \pi 2 - \alpha) = \cos\alpha \qquad &\cos(\frac \pi 2 - \alpha) = \sin\alpha \qquad &\tan(\frac \pi 2 - \alpha) = \cot\alpha \\ &\sin(\frac {3\pi} 2 + \alpha) = -\cos\alpha \qquad &\cos(\frac {3\pi} 2 + \alpha) = \sin\alpha \qquad &\tan(\frac {3\pi} 2 + \alpha) = -\cot\alpha \\ &\sin(\frac {3\pi} 2 - \alpha) = -\cos\alpha \qquad &\cos(\frac {3\pi} 2 - \alpha) = -\sin\alpha \qquad &\tan(\frac {3\pi} 2 - \alpha) = \cot\alpha \\ \end{align}

通过二、三组诱导公式,可以推出 kπ2±α\frac {k\pi}{2} \pm \alpha 角的公式变化,辅助口诀:奇变偶不变,符号看象限

三角函数参考:

高中数学三角函数公式大全,竞赛高考都适用(含公式推导) - 知乎

【三角函数,高中如何定义?「零基础保姆教程」】 www.bilibili.com/video/BV1KC…