如何有效地找到两个轮廓集之间的所有交点

79 阅读3分钟

可以使用以下方法之一来查找两个轮廓集之间的所有交点:

  1. 暴力法:这种方法很简单,但计算量很大。它通过遍历两个点集中的所有点,并计算每对点之间的距离来找到所有交点。
  2. 空间索引:这种方法可以显著减少计算量。它使用空间索引结构(例如R树)来快速找到位于给定范围内的所有点。然后,可以检查这些点是否属于两个轮廓集,并计算出交点。
  3. 几何算法:可以使用各种几何算法来找到两个轮廓集之间的交点。这些算法通常比暴力法和空间索引方法更有效,但可能更难实现。

对于每个方法,都提供了实现的代码示例。

方法1:暴力法

import numpy as np

def find_intersections_brute_force(contour1, contour2):
  """
  Finds all the intersection points between two contour sets using a brute force approach.

  Args:
    contour1: A numpy array of shape (n, 2) representing the first contour set.
    contour2: A numpy array of shape (m, 2) representing the second contour set.

  Returns:
    A numpy array of shape (k, 2) representing the intersection points.
  """

  intersections = []
  for point1 in contour1:
    for point2 in contour2:
      if np.allclose(point1, point2):
        intersections.append(point1)

  return np.array(intersections)

方法2:空间索引

import numpy as np
import scipy.spatial

def find_intersections_spatial_index(contour1, contour2):
  """
  Finds all the intersection points between two contour sets using a spatial index.

  Args:
    contour1: A numpy array of shape (n, 2) representing the first contour set.
    contour2: A numpy array of shape (m, 2) representing the second contour set.

  Returns:
    A numpy array of shape (k, 2) representing the intersection points.
  """

  # Create a spatial index for the first contour set.
  tree = scipy.spatial.KDTree(contour1)

  # Find all the points in the second contour set that are within a small distance of any point in the first contour set.
  distances, indices = tree.query(contour2, k=1, distance_upper_bound=1e-6)

  # Find the intersection points between the two contour sets.
  intersections = []
  for i, distance in enumerate(distances):
    if distance < 1e-6:
      intersections.append(contour2[i])

  return np.array(intersections)

方法3:几何算法

import numpy as np

def find_intersections_geometric(contour1, contour2):
  """
  Finds all the intersection points between two contour sets using a geometric algorithm.

  Args:
    contour1: A numpy array of shape (n, 2) representing the first contour set.
    contour2: A numpy array of shape (m, 2) representing the second contour set.

  Returns:
    A numpy array of shape (k, 2) representing the intersection points.
  """

  # Find all the line segments in the first contour set.
  line_segments1 = []
  for i in range(contour1.shape[0] - 1):
    line_segments1.append((contour1[i], contour1[i+1]))

  # Find all the line segments in the second contour set.
  line_segments2 = []
  for i in range(contour2.shape[0] - 1):
    line_segments2.append((contour2[i], contour2[i+1]))

  # Find all the intersection points between the two sets of line segments.
  intersections = []
  for line_segment1 in line_segments1:
    for line_segment2 in line_segments2:
      intersection_point = intersection(line_segment1, line_segment2)
      if intersection_point is not None:
        intersections.append(intersection_point)

  return np.array(intersections)

def intersection(line_segment1, line_segment2):
  """
  Finds the intersection point between two line segments.

  Args:
    line_segment1: A tuple of two points representing the first line segment.
    line_segment2: A tuple of two points representing the second line segment.

  Returns:
    A tuple of two points representing the intersection point, or None if the line segments do not intersect.
  """

  # Convert the line segments to vectors.
  vector1 = line_segment1[1] - line_segment1[0]
  vector2 = line_segment2[1] - line_segment2[0]

  # Find the cross product of the two vectors.
  cross_product = np.cross(vector1, vector2)

  # If the cross product is zero, the line segments are parallel or collinear.
  if cross_product == 0:
    return None

  # Find the intersection point using the parameterization of the line segments.
  t = (np.cross(line_segment2[0] - line_segment1[0], vector2) / cross_product)
  u = (np.cross(line_segment1[0] - line_segment2[0], vector1) / cross_product)

  # If t and u are between 0 and 1, the line segments intersect.
  if 0 <= t <= 1 and 0 <= u <= 1:
    return line_segment1[0] + t * vector1
  else:
    return None