yolov11入门笔记

353 阅读1分钟

pip install ultralytics

会在python安装目录下的Scripts目录下安装yolo和ultralytics两个工具

yolo help

    Arguments received: ['yolo', 'help']. Ultralytics 'yolo' commands use the following syntax:

        yolo TASK MODE ARGS

        Where   TASK (optional) is one of frozenset({'pose', 'obb', 'detect', 'classify', 'segment'})
                MODE (required) is one of frozenset({'benchmark', 'predict', 'export', 'val', 'track', 'train'})
                ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
                    See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'

    1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
        yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

    2. Predict a YouTube video using a pretrained segmentation model at image size 320:
        yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

    3. Val a pretrained detection model at batch-size 1 and image size 640:
        yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640

    4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
        yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128

    5. Ultralytics solutions usage
        yolo solutions count or in ['heatmap', 'queue', 'speed', 'workout', 'analytics', 'trackzone', 'inference'] source="path/to/video/file.mp4"

    6. Run special commands:
        yolo help
        yolo checks
        yolo version
        yolo settings
        yolo copy-cfg
        yolo cfg
        yolo solutions help

    Docs: https://docs.ultralytics.com
    Solutions: https://docs.ultralytics.com/solutions/
    Community: https://community.ultralytics.com
    GitHub: https://github.com/ultralytics/ultralytics

预测

yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

在当前目录下下载yolo11n.pt模型文件,并将预测结果放到当前目录的 runs\detect\predict 目录下

代码实现:

from ultralytics import YOLO

if __name__ == "__main__":
    # Load a model
    model = YOLO("yolo11s.pt") # https://github.com/ultralytics/assets/releases/tag/v8.3.0
    # Perform object detection on an image
    img = "data/images/1.png"
    results = model(img)
    results[0].show()
    # Export the model to ONNX format
    # path = model.export(format="onnx")  # return path to exported model

v8.3.0 现有模型如下:

FastSAM-s.pt
FastSAM-x.pt
mobile_sam.pt
rtdetr-l.pt
rtdetr-x.pt
sam2.1_b.pt
sam2.1_l.pt
sam2.1_s.pt
sam2.1_t.pt
sam2_b.pt
sam2_l.pt
sam2_s.pt
sam2_t.pt
sam_b.pt
sam_l.pt
yolo11l-cls.pt
yolo11l-obb.pt
yolo11l-pose.pt
yolo11l-seg.pt
yolo11l.pt
yolo11m-cls.pt
yolo11m-obb.pt
yolo11m-pose.pt
yolo11m-seg.pt
yolo11m.pt
yolo11n-cls.pt
yolo11n-obb.pt
yolo11n-pose.pt
yolo11n-seg.pt
yolo11n.pt
yolo11s-cls.pt
yolo11s-obb.pt
yolo11s-pose.pt
yolo11s-seg.pt
yolo11s.pt
yolo11x-cls.pt
yolo11x-obb.pt
yolo11x-pose.pt
yolo11x-seg.pt
yolo11x.pt
yolo12l.pt
yolo12m.pt
yolo12n.pt
yolo12s.pt
yolo12x.pt
yolov10b.pt
yolov10l.pt
yolov10m.pt
yolov10n.pt
yolov10s.pt
yolov10x.pt
yolov3-sppu.pt
yolov3-tinyu.pt
yolov3u.pt
yolov5l6u.pt
yolov5lu.pt
yolov5m6u.pt
yolov5mu.pt
yolov5n6u.pt
yolov5nu.pt
yolov5s6u.pt
yolov5su.pt
yolov5x6u.pt
yolov5xu.pt
yolov8l-cls.pt
yolov8l-human.pt
yolov8l-obb.pt
yolov8l-oiv7.pt
yolov8l-pose.pt
yolov8l-seg.pt
yolov8l-world-cc3m.pt
yolov8l-world.pt
yolov8l-worldv2-cc3m.pt
yolov8l-worldv2.pt
yolov8l.pt
yolov8m-cls.pt
yolov8m-human.pt
yolov8m-obb.pt
yolov8m-oiv7.pt
yolov8m-pose.pt
yolov8m-seg.pt
yolov8m-world.pt
yolov8m-worldv2.pt
yolov8m.pt
yolov8n-cls.pt
yolov8n-human.pt
yolov8n-obb.pt
yolov8n-oiv7.pt
yolov8n-pose.pt
yolov8n-seg.pt
yolov8n.pt
yolov8s-cls.pt
yolov8s-human.pt
yolov8s-obb.pt
yolov8s-oiv7.pt
yolov8s-pose.pt
yolov8s-seg.pt
yolov8s-world.pt
yolov8s-worldv2.pt
yolov8s.pt
yolov8x-cls.pt
yolov8x-human.pt
yolov8x-obb.pt
yolov8x-oiv7.pt
yolov8x-pose-p6.pt
yolov8x-pose.pt
yolov8x-seg.pt
yolov8x-world.pt
yolov8x-worldv2.pt
yolov8x.pt
yolov8x6-500.pt
yolov8x6-oiv7.pt
yolov8x6.pt
yolov9c-seg.pt
yolov9c.pt
yolov9e-seg.pt
yolov9e.pt
yolov9m.pt
yolov9s.pt
yolov9t.pt
yolo_nas_l.pt
yolo_nas_m.pt
yolo_nas_s.pt

数据集 dataset