Reconciler 模块概述
React 协调器(Reconciler)是 React 架构中负责组件更新协调与虚拟 DOM 树构建的核心模块。其核心目标是通过以下机制实现高效渲染:
- 增量更新:仅处理变化的组件,避免全量渲染。
- 双缓冲机制:在内存中维护两棵 Fiber 树(
current与workInProgress),通过交替切换实现无卡顿更新。 - 优先级调度:与调度器(Scheduler)协作,支持高优先级任务抢占式执行。
- 可中断渲染:通过时间切片和任务优先级调度,允许高优先级任务中断并抢占低优先级任务。
下面是整个react reconciler 的运作流程
一、输入阶段
-
初始化 Fiber 树
首次渲染时,通过createRoot创建根 Fiber 节点,并调用updateContainer触发初始协调流程。 -
触发更新
通过setState、useState、ReactDOM.render等 API 触发组件更新,最终调用scheduleUpdateOnFiber函数。此函数标记需要更新的 Fiber 节点并生成更新优先级。
export function updateContainer(
element: ReactNodeList,
container: OpaqueRoot,
parentComponent: ?React$Component<any, any>,
callback: ?Function,
): Lane {
const current = container.current;
const lane = requestUpdateLane(current);
updateContainerImpl(
current,
lane,
element,
container,
parentComponent,
callback,
);
return lane;
}
scheduleUpdateOnFiber 源码
export function scheduleUpdateOnFiber(
root: FiberRoot,
fiber: Fiber,
lane: Lane,
) {
if (__DEV__) {
if (isRunningInsertionEffect) {
console.error('useInsertionEffect must not schedule updates.');
}
}
if (__DEV__) {
if (isFlushingPassiveEffects) {
didScheduleUpdateDuringPassiveEffects = true;
}
}
// Check if the work loop is currently suspended and waiting for data to
// finish loading.
if (
// Suspended render phase
(root === workInProgressRoot &&
(workInProgressSuspendedReason === SuspendedOnData ||
workInProgressSuspendedReason === SuspendedOnAction)) ||
// Suspended commit phase
root.cancelPendingCommit !== null
) {
// The incoming update might unblock the current render. Interrupt the
// current attempt and restart from the top.
prepareFreshStack(root, NoLanes);
const didAttemptEntireTree = false;
markRootSuspended(
root,
workInProgressRootRenderLanes,
workInProgressDeferredLane,
didAttemptEntireTree,
);
}
// Mark that the root has a pending update.
markRootUpdated(root, lane);
if (
(executionContext & RenderContext) !== NoLanes &&
root === workInProgressRoot
) {
// This update was dispatched during the render phase. This is a mistake
// if the update originates from user space (with the exception of local
// hook updates, which are handled differently and don't reach this
// function), but there are some internal React features that use this as
// an implementation detail, like selective hydration.
warnAboutRenderPhaseUpdatesInDEV(fiber);
// Track lanes that were updated during the render phase
workInProgressRootRenderPhaseUpdatedLanes = mergeLanes(
workInProgressRootRenderPhaseUpdatedLanes,
lane,
);
} else {
// This is a normal update, scheduled from outside the render phase. For
// example, during an input event.
if (enableUpdaterTracking) {
if (isDevToolsPresent) {
addFiberToLanesMap(root, fiber, lane);
}
}
warnIfUpdatesNotWrappedWithActDEV(fiber);
if (enableTransitionTracing) {
const transition = ReactSharedInternals.T;
if (transition !== null && transition.name != null) {
if (transition.startTime === -1) {
transition.startTime = now();
}
// $FlowFixMe[prop-missing]: The BatchConfigTransition and Transition types are incompatible but was previously untyped and thus uncaught
// $FlowFixMe[incompatible-call]: "
addTransitionToLanesMap(root, transition, lane);
}
}
if (root === workInProgressRoot) {
// Received an update to a tree that's in the middle of rendering. Mark
// that there was an interleaved update work on this root.
if ((executionContext & RenderContext) === NoContext) {
workInProgressRootInterleavedUpdatedLanes = mergeLanes(
workInProgressRootInterleavedUpdatedLanes,
lane,
);
}
if (workInProgressRootExitStatus === RootSuspendedWithDelay) {
// The root already suspended with a delay, which means this render
// definitely won't finish. Since we have a new update, let's mark it as
// suspended now, right before marking the incoming update. This has the
// effect of interrupting the current render and switching to the update.
// TODO: Make sure this doesn't override pings that happen while we've
// already started rendering.
const didAttemptEntireTree = false;
markRootSuspended(
root,
workInProgressRootRenderLanes,
workInProgressDeferredLane,
didAttemptEntireTree,
);
}
}
ensureRootIsScheduled(root);
if (
lane === SyncLane &&
executionContext === NoContext &&
!disableLegacyMode &&
(fiber.mode & ConcurrentMode) === NoMode
) {
if (__DEV__ && ReactSharedInternals.isBatchingLegacy) {
// Treat `act` as if it's inside `batchedUpdates`, even in legacy mode.
} else {
// Flush the synchronous work now, unless we're already working or inside
// a batch. This is intentionally inside scheduleUpdateOnFiber instead of
// scheduleCallbackForFiber to preserve the ability to schedule a callback
// without immediately flushing it. We only do this for user-initiated
// updates, to preserve historical behavior of legacy mode.
resetRenderTimer();
flushSyncWorkOnLegacyRootsOnly();
}
}
}
}
二、协调阶段(Reconciler Phase)
1. 任务调度
与调度器(scheduler)交互,根据更新优先级将任务拆分为时间切片,注册到调度队列中等待执行。 调度主要代码如下:
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @flow
*/
/* eslint-disable no-var */
import type {PriorityLevel} from '../SchedulerPriorities';
import {
enableProfiling,
frameYieldMs,
userBlockingPriorityTimeout,
lowPriorityTimeout,
normalPriorityTimeout,
enableRequestPaint,
enableAlwaysYieldScheduler,
} from '../SchedulerFeatureFlags';
import {push, pop, peek} from '../SchedulerMinHeap';
// TODO: Use symbols?
import {
ImmediatePriority,
UserBlockingPriority,
NormalPriority,
LowPriority,
IdlePriority,
} from '../SchedulerPriorities';
import {
markTaskRun,
markTaskYield,
markTaskCompleted,
markTaskCanceled,
markTaskErrored,
markSchedulerSuspended,
markSchedulerUnsuspended,
markTaskStart,
stopLoggingProfilingEvents,
startLoggingProfilingEvents,
} from '../SchedulerProfiling';
export type Callback = boolean => ?Callback;
export opaque type Task = {
id: number,
callback: Callback | null,
priorityLevel: PriorityLevel,
startTime: number,
expirationTime: number,
sortIndex: number,
isQueued?: boolean,
};
let getCurrentTime: () => number | DOMHighResTimeStamp;
const hasPerformanceNow =
// $FlowFixMe[method-unbinding]
typeof performance === 'object' && typeof performance.now === 'function';
if (hasPerformanceNow) {
const localPerformance = performance;
getCurrentTime = () => localPerformance.now();
} else {
const localDate = Date;
const initialTime = localDate.now();
getCurrentTime = () => localDate.now() - initialTime;
}
// Max 31 bit integer. The max integer size in V8 for 32-bit systems.
// Math.pow(2, 30) - 1
// 0b111111111111111111111111111111
var maxSigned31BitInt = 1073741823;
// Tasks are stored on a min heap
var taskQueue: Array<Task> = [];
var timerQueue: Array<Task> = [];
// Incrementing id counter. Used to maintain insertion order.
var taskIdCounter = 1;
var currentTask = null;
var currentPriorityLevel = NormalPriority;
// This is set while performing work, to prevent re-entrance.
var isPerformingWork = false;
var isHostCallbackScheduled = false;
var isHostTimeoutScheduled = false;
var needsPaint = false;
// Capture local references to native APIs, in case a polyfill overrides them.
const localSetTimeout = typeof setTimeout === 'function' ? setTimeout : null;
const localClearTimeout =
typeof clearTimeout === 'function' ? clearTimeout : null;
const localSetImmediate =
typeof setImmediate !== 'undefined' ? setImmediate : null; // IE and Node.js + jsdom
function advanceTimers(currentTime: number) {
// Check for tasks that are no longer delayed and add them to the queue.
let timer = peek(timerQueue);
while (timer !== null) {
if (timer.callback === null) {
// Timer was cancelled.
pop(timerQueue);
} else if (timer.startTime <= currentTime) {
// Timer fired. Transfer to the task queue.
pop(timerQueue);
timer.sortIndex = timer.expirationTime;
push(taskQueue, timer);
if (enableProfiling) {
markTaskStart(timer, currentTime);
timer.isQueued = true;
}
} else {
// Remaining timers are pending.
return;
}
timer = peek(timerQueue);
}
}
function handleTimeout(currentTime: number) {
isHostTimeoutScheduled = false;
advanceTimers(currentTime);
if (!isHostCallbackScheduled) {
if (peek(taskQueue) !== null) {
isHostCallbackScheduled = true;
requestHostCallback();
} else {
const firstTimer = peek(timerQueue);
if (firstTimer !== null) {
requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime);
}
}
}
}
function flushWork(initialTime: number) {
if (enableProfiling) {
markSchedulerUnsuspended(initialTime);
}
// We'll need a host callback the next time work is scheduled.
isHostCallbackScheduled = false;
if (isHostTimeoutScheduled) {
// We scheduled a timeout but it's no longer needed. Cancel it.
isHostTimeoutScheduled = false;
cancelHostTimeout();
}
isPerformingWork = true;
const previousPriorityLevel = currentPriorityLevel;
try {
if (enableProfiling) {
try {
return workLoop(initialTime);
} catch (error) {
if (currentTask !== null) {
const currentTime = getCurrentTime();
// $FlowFixMe[incompatible-call] found when upgrading Flow
markTaskErrored(currentTask, currentTime);
// $FlowFixMe[incompatible-use] found when upgrading Flow
currentTask.isQueued = false;
}
throw error;
}
} else {
// No catch in prod code path.
return workLoop(initialTime);
}
} finally {
currentTask = null;
currentPriorityLevel = previousPriorityLevel;
isPerformingWork = false;
if (enableProfiling) {
const currentTime = getCurrentTime();
markSchedulerSuspended(currentTime);
}
}
}
function workLoop(initialTime: number) {
let currentTime = initialTime;
advanceTimers(currentTime);
currentTask = peek(taskQueue);
while (currentTask !== null) {
if (!enableAlwaysYieldScheduler) {
if (currentTask.expirationTime > currentTime && shouldYieldToHost()) {
// This currentTask hasn't expired, and we've reached the deadline.
break;
}
}
// $FlowFixMe[incompatible-use] found when upgrading Flow
const callback = currentTask.callback;
if (typeof callback === 'function') {
// $FlowFixMe[incompatible-use] found when upgrading Flow
currentTask.callback = null;
// $FlowFixMe[incompatible-use] found when upgrading Flow
currentPriorityLevel = currentTask.priorityLevel;
// $FlowFixMe[incompatible-use] found when upgrading Flow
const didUserCallbackTimeout = currentTask.expirationTime <= currentTime;
if (enableProfiling) {
// $FlowFixMe[incompatible-call] found when upgrading Flow
markTaskRun(currentTask, currentTime);
}
const continuationCallback = callback(didUserCallbackTimeout);
currentTime = getCurrentTime();
if (typeof continuationCallback === 'function') {
// If a continuation is returned, immediately yield to the main thread
// regardless of how much time is left in the current time slice.
// $FlowFixMe[incompatible-use] found when upgrading Flow
currentTask.callback = continuationCallback;
if (enableProfiling) {
// $FlowFixMe[incompatible-call] found when upgrading Flow
markTaskYield(currentTask, currentTime);
}
advanceTimers(currentTime);
return true;
} else {
if (enableProfiling) {
// $FlowFixMe[incompatible-call] found when upgrading Flow
markTaskCompleted(currentTask, currentTime);
// $FlowFixMe[incompatible-use] found when upgrading Flow
currentTask.isQueued = false;
}
if (currentTask === peek(taskQueue)) {
pop(taskQueue);
}
advanceTimers(currentTime);
}
} else {
pop(taskQueue);
}
currentTask = peek(taskQueue);
if (enableAlwaysYieldScheduler) {
if (currentTask === null || currentTask.expirationTime > currentTime) {
// This currentTask hasn't expired we yield to the browser task.
break;
}
}
}
// Return whether there's additional work
if (currentTask !== null) {
return true;
} else {
const firstTimer = peek(timerQueue);
if (firstTimer !== null) {
requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime);
}
return false;
}
}
function unstable_runWithPriority<T>(
priorityLevel: PriorityLevel,
eventHandler: () => T,
): T {
switch (priorityLevel) {
case ImmediatePriority:
case UserBlockingPriority:
case NormalPriority:
case LowPriority:
case IdlePriority:
break;
default:
priorityLevel = NormalPriority;
}
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = priorityLevel;
try {
return eventHandler();
} finally {
currentPriorityLevel = previousPriorityLevel;
}
}
function unstable_next<T>(eventHandler: () => T): T {
var priorityLevel;
switch (currentPriorityLevel) {
case ImmediatePriority:
case UserBlockingPriority:
case NormalPriority:
// Shift down to normal priority
priorityLevel = NormalPriority;
break;
default:
// Anything lower than normal priority should remain at the current level.
priorityLevel = currentPriorityLevel;
break;
}
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = priorityLevel;
try {
return eventHandler();
} finally {
currentPriorityLevel = previousPriorityLevel;
}
}
function unstable_wrapCallback<T: (...Array<mixed>) => mixed>(callback: T): T {
var parentPriorityLevel = currentPriorityLevel;
// $FlowFixMe[incompatible-return]
// $FlowFixMe[missing-this-annot]
return function () {
// This is a fork of runWithPriority, inlined for performance.
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = parentPriorityLevel;
try {
return callback.apply(this, arguments);
} finally {
currentPriorityLevel = previousPriorityLevel;
}
};
}
function unstable_scheduleCallback(
priorityLevel: PriorityLevel,
callback: Callback,
options?: {delay: number},
): Task {
var currentTime = getCurrentTime();
var startTime;
if (typeof options === 'object' && options !== null) {
var delay = options.delay;
if (typeof delay === 'number' && delay > 0) {
startTime = currentTime + delay;
} else {
startTime = currentTime;
}
} else {
startTime = currentTime;
}
var timeout;
switch (priorityLevel) {
case ImmediatePriority:
// Times out immediately
timeout = -1;
break;
case UserBlockingPriority:
// Eventually times out
timeout = userBlockingPriorityTimeout;
break;
case IdlePriority:
// Never times out
timeout = maxSigned31BitInt;
break;
case LowPriority:
// Eventually times out
timeout = lowPriorityTimeout;
break;
case NormalPriority:
default:
// Eventually times out
timeout = normalPriorityTimeout;
break;
}
var expirationTime = startTime + timeout;
var newTask: Task = {
id: taskIdCounter++,
callback,
priorityLevel,
startTime,
expirationTime,
sortIndex: -1,
};
if (enableProfiling) {
newTask.isQueued = false;
}
if (startTime > currentTime) {
// This is a delayed task.
newTask.sortIndex = startTime;
push(timerQueue, newTask);
if (peek(taskQueue) === null && newTask === peek(timerQueue)) {
// All tasks are delayed, and this is the task with the earliest delay.
if (isHostTimeoutScheduled) {
// Cancel an existing timeout.
cancelHostTimeout();
} else {
isHostTimeoutScheduled = true;
}
// Schedule a timeout.
requestHostTimeout(handleTimeout, startTime - currentTime);
}
} else {
newTask.sortIndex = expirationTime;
push(taskQueue, newTask);
if (enableProfiling) {
markTaskStart(newTask, currentTime);
newTask.isQueued = true;
}
// Schedule a host callback, if needed. If we're already performing work,
// wait until the next time we yield.
if (!isHostCallbackScheduled && !isPerformingWork) {
isHostCallbackScheduled = true;
requestHostCallback();
}
}
return newTask;
}
function unstable_cancelCallback(task: Task) {
if (enableProfiling) {
if (task.isQueued) {
const currentTime = getCurrentTime();
markTaskCanceled(task, currentTime);
task.isQueued = false;
}
}
// Null out the callback to indicate the task has been canceled. (Can't
// remove from the queue because you can't remove arbitrary nodes from an
// array based heap, only the first one.)
task.callback = null;
}
function unstable_getCurrentPriorityLevel(): PriorityLevel {
return currentPriorityLevel;
}
let isMessageLoopRunning = false;
let taskTimeoutID: TimeoutID = (-1: any);
// Scheduler periodically yields in case there is other work on the main
// thread, like user events. By default, it yields multiple times per frame.
// It does not attempt to align with frame boundaries, since most tasks don't
// need to be frame aligned; for those that do, use requestAnimationFrame.
let frameInterval = frameYieldMs;
let startTime = -1;
function shouldYieldToHost(): boolean {
if (!enableAlwaysYieldScheduler && enableRequestPaint && needsPaint) {
// Yield now.
return true;
}
const timeElapsed = getCurrentTime() - startTime;
if (timeElapsed < frameInterval) {
// The main thread has only been blocked for a really short amount of time;
// smaller than a single frame. Don't yield yet.
return false;
}
// Yield now.
return true;
}
function requestPaint() {
if (enableRequestPaint) {
needsPaint = true;
}
}
function forceFrameRate(fps: number) {
if (fps < 0 || fps > 125) {
// Using console['error'] to evade Babel and ESLint
console['error'](
'forceFrameRate takes a positive int between 0 and 125, ' +
'forcing frame rates higher than 125 fps is not supported',
);
return;
}
if (fps > 0) {
frameInterval = Math.floor(1000 / fps);
} else {
// reset the framerate
frameInterval = frameYieldMs;
}
}
const performWorkUntilDeadline = () => {
if (enableRequestPaint) {
needsPaint = false;
}
if (isMessageLoopRunning) {
const currentTime = getCurrentTime();
// Keep track of the start time so we can measure how long the main thread
// has been blocked.
startTime = currentTime;
// If a scheduler task throws, exit the current browser task so the
// error can be observed.
//
// Intentionally not using a try-catch, since that makes some debugging
// techniques harder. Instead, if `flushWork` errors, then `hasMoreWork` will
// remain true, and we'll continue the work loop.
let hasMoreWork = true;
try {
hasMoreWork = flushWork(currentTime);
} finally {
if (hasMoreWork) {
// If there's more work, schedule the next message event at the end
// of the preceding one.
schedulePerformWorkUntilDeadline();
} else {
isMessageLoopRunning = false;
}
}
}
};
let schedulePerformWorkUntilDeadline;
if (typeof localSetImmediate === 'function') {
// Node.js and old IE.
// There's a few reasons for why we prefer setImmediate.
//
// Unlike MessageChannel, it doesn't prevent a Node.js process from exiting.
// (Even though this is a DOM fork of the Scheduler, you could get here
// with a mix of Node.js 15+, which has a MessageChannel, and jsdom.)
// https://github.com/facebook/react/issues/20756
//
// But also, it runs earlier which is the semantic we want.
// If other browsers ever implement it, it's better to use it.
// Although both of these would be inferior to native scheduling.
schedulePerformWorkUntilDeadline = () => {
localSetImmediate(performWorkUntilDeadline);
};
} else if (typeof MessageChannel !== 'undefined') {
// DOM and Worker environments.
// We prefer MessageChannel because of the 4ms setTimeout clamping.
const channel = new MessageChannel();
const port = channel.port2;
channel.port1.onmessage = performWorkUntilDeadline;
schedulePerformWorkUntilDeadline = () => {
port.postMessage(null);
};
} else {
// We should only fallback here in non-browser environments.
schedulePerformWorkUntilDeadline = () => {
// $FlowFixMe[not-a-function] nullable value
localSetTimeout(performWorkUntilDeadline, 0);
};
}
function requestHostCallback() {
if (!isMessageLoopRunning) {
isMessageLoopRunning = true;
schedulePerformWorkUntilDeadline();
}
}
function requestHostTimeout(
callback: (currentTime: number) => void,
ms: number,
) {
// $FlowFixMe[not-a-function] nullable value
taskTimeoutID = localSetTimeout(() => {
callback(getCurrentTime());
}, ms);
}
function cancelHostTimeout() {
// $FlowFixMe[not-a-function] nullable value
localClearTimeout(taskTimeoutID);
taskTimeoutID = ((-1: any): TimeoutID);
}
export {
ImmediatePriority as unstable_ImmediatePriority,
UserBlockingPriority as unstable_UserBlockingPriority,
NormalPriority as unstable_NormalPriority,
IdlePriority as unstable_IdlePriority,
LowPriority as unstable_LowPriority,
unstable_runWithPriority,
unstable_next,
unstable_scheduleCallback,
unstable_cancelCallback,
unstable_wrapCallback,
unstable_getCurrentPriorityLevel,
shouldYieldToHost as unstable_shouldYield,
requestPaint as unstable_requestPaint,
getCurrentTime as unstable_now,
forceFrameRate as unstable_forceFrameRate,
};
export const unstable_Profiling: {
startLoggingProfilingEvents(): void,
stopLoggingProfilingEvents(): ArrayBuffer | null,
} | null = enableProfiling
? {
startLoggingProfilingEvents,
stopLoggingProfilingEvents,
}
: null;
2. 构建 Fiber 树
以“双缓冲机制”为基础,在内存中构建新的 workInProgress Fiber 树:
通过 beginWork 逐层对比新旧 Fiber 节点,调用 updateClassComponent 或其它组件逻辑生成子节点。
function beginWork(
current: Fiber | null,
workInProgress: Fiber,
renderLanes: Lanes,
): Fiber | null {
if (__DEV__) {
if (workInProgress._debugNeedsRemount && current !== null) {
// This will restart the begin phase with a new fiber.
const copiedFiber = createFiberFromTypeAndProps(
workInProgress.type,
workInProgress.key,
workInProgress.pendingProps,
workInProgress._debugOwner || null,
workInProgress.mode,
workInProgress.lanes,
);
if (enableOwnerStacks) {
copiedFiber._debugStack = workInProgress._debugStack;
copiedFiber._debugTask = workInProgress._debugTask;
}
return remountFiber(current, workInProgress, copiedFiber);
}
}
if (current !== null) {
const oldProps = current.memoizedProps;
const newProps = workInProgress.pendingProps;
if (
oldProps !== newProps ||
hasLegacyContextChanged() ||
// Force a re-render if the implementation changed due to hot reload:
(__DEV__ ? workInProgress.type !== current.type : false)
) {
// If props or context changed, mark the fiber as having performed work.
// This may be unset if the props are determined to be equal later (memo).
didReceiveUpdate = true;
} else {
// Neither props nor legacy context changes. Check if there's a pending
// update or context change.
const hasScheduledUpdateOrContext = checkScheduledUpdateOrContext(
current,
renderLanes,
);
if (
!hasScheduledUpdateOrContext &&
// If this is the second pass of an error or suspense boundary, there
// may not be work scheduled on `current`, so we check for this flag.
(workInProgress.flags & DidCapture) === NoFlags
) {
// No pending updates or context. Bail out now.
didReceiveUpdate = false;
return attemptEarlyBailoutIfNoScheduledUpdate(
current,
workInProgress,
renderLanes,
);
}
if ((current.flags & ForceUpdateForLegacySuspense) !== NoFlags) {
// This is a special case that only exists for legacy mode.
// See https://github.com/facebook/react/pull/19216.
didReceiveUpdate = true;
} else {
// An update was scheduled on this fiber, but there are no new props
// nor legacy context. Set this to false. If an update queue or context
// consumer produces a changed value, it will set this to true. Otherwise,
// the component will assume the children have not changed and bail out.
didReceiveUpdate = false;
}
}
} else {
didReceiveUpdate = false;
if (getIsHydrating() && isForkedChild(workInProgress)) {
// Check if this child belongs to a list of muliple children in
// its parent.
//
// In a true multi-threaded implementation, we would render children on
// parallel threads. This would represent the beginning of a new render
// thread for this subtree.
//
// We only use this for id generation during hydration, which is why the
// logic is located in this special branch.
const slotIndex = workInProgress.index;
const numberOfForks = getForksAtLevel(workInProgress);
pushTreeId(workInProgress, numberOfForks, slotIndex);
}
}
// Before entering the begin phase, clear pending update priority.
// TODO: This assumes that we're about to evaluate the component and process
// the update queue. However, there's an exception: SimpleMemoComponent
// sometimes bails out later in the begin phase. This indicates that we should
// move this assignment out of the common path and into each branch.
workInProgress.lanes = NoLanes;
switch (workInProgress.tag) {
case LazyComponent: {
const elementType = workInProgress.elementType;
return mountLazyComponent(
current,
workInProgress,
elementType,
renderLanes,
);
}
case FunctionComponent: {
const Component = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
const resolvedProps =
disableDefaultPropsExceptForClasses ||
workInProgress.elementType === Component
? unresolvedProps
: resolveDefaultPropsOnNonClassComponent(Component, unresolvedProps);
return updateFunctionComponent(
current,
workInProgress,
Component,
resolvedProps,
renderLanes,
);
}
case ClassComponent: {
const Component = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
const resolvedProps = resolveClassComponentProps(
Component,
unresolvedProps,
workInProgress.elementType === Component,
);
return updateClassComponent(
current,
workInProgress,
Component,
resolvedProps,
renderLanes,
);
}
case HostRoot:
return updateHostRoot(current, workInProgress, renderLanes);
case HostHoistable:
if (supportsResources) {
return updateHostHoistable(current, workInProgress, renderLanes);
}
// Fall through
case HostSingleton:
if (supportsSingletons) {
return updateHostSingleton(current, workInProgress, renderLanes);
}
// Fall through
case HostComponent:
return updateHostComponent(current, workInProgress, renderLanes);
case HostText:
return updateHostText(current, workInProgress);
case SuspenseComponent:
return updateSuspenseComponent(current, workInProgress, renderLanes);
case HostPortal:
return updatePortalComponent(current, workInProgress, renderLanes);
case ForwardRef: {
const type = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
const resolvedProps =
disableDefaultPropsExceptForClasses ||
workInProgress.elementType === type
? unresolvedProps
: resolveDefaultPropsOnNonClassComponent(type, unresolvedProps);
return updateForwardRef(
current,
workInProgress,
type,
resolvedProps,
renderLanes,
);
}
case Fragment:
return updateFragment(current, workInProgress, renderLanes);
case Mode:
return updateMode(current, workInProgress, renderLanes);
case Profiler:
return updateProfiler(current, workInProgress, renderLanes);
case ContextProvider:
return updateContextProvider(current, workInProgress, renderLanes);
case ContextConsumer:
return updateContextConsumer(current, workInProgress, renderLanes);
case MemoComponent: {
const type = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
// Resolve outer props first, then resolve inner props.
let resolvedProps = disableDefaultPropsExceptForClasses
? unresolvedProps
: resolveDefaultPropsOnNonClassComponent(type, unresolvedProps);
resolvedProps = disableDefaultPropsExceptForClasses
? resolvedProps
: resolveDefaultPropsOnNonClassComponent(type.type, resolvedProps);
return updateMemoComponent(
current,
workInProgress,
type,
resolvedProps,
renderLanes,
);
}
case SimpleMemoComponent: {
return updateSimpleMemoComponent(
current,
workInProgress,
workInProgress.type,
workInProgress.pendingProps,
renderLanes,
);
}
case IncompleteClassComponent: {
if (disableLegacyMode) {
break;
}
const Component = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
const resolvedProps = resolveClassComponentProps(
Component,
unresolvedProps,
workInProgress.elementType === Component,
);
return mountIncompleteClassComponent(
current,
workInProgress,
Component,
resolvedProps,
renderLanes,
);
}
case IncompleteFunctionComponent: {
if (disableLegacyMode) {
break;
}
const Component = workInProgress.type;
const unresolvedProps = workInProgress.pendingProps;
const resolvedProps = resolveClassComponentProps(
Component,
unresolvedProps,
workInProgress.elementType === Component,
);
return mountIncompleteFunctionComponent(
current,
workInProgress,
Component,
resolvedProps,
renderLanes,
);
}
case SuspenseListComponent: {
return updateSuspenseListComponent(current, workInProgress, renderLanes);
}
case ScopeComponent: {
if (enableScopeAPI) {
return updateScopeComponent(current, workInProgress, renderLanes);
}
break;
}
case OffscreenComponent: {
return updateOffscreenComponent(current, workInProgress, renderLanes);
}
case LegacyHiddenComponent: {
if (enableLegacyHidden) {
return updateLegacyHiddenComponent(
current,
workInProgress,
renderLanes,
);
}
break;
}
case CacheComponent: {
return updateCacheComponent(current, workInProgress, renderLanes);
}
case TracingMarkerComponent: {
if (enableTransitionTracing) {
return updateTracingMarkerComponent(
current,
workInProgress,
renderLanes,
);
}
break;
}
case ViewTransitionComponent: {
if (enableViewTransition) {
return updateViewTransition(current, workInProgress, renderLanes);
}
break;
}
case Throw: {
// This represents a Component that threw in the reconciliation phase.
// So we'll rethrow here. This might be a Thenable.
throw workInProgress.pendingProps;
}
}
throw new Error(
`Unknown unit of work tag (${workInProgress.tag}). This error is likely caused by a bug in ` +
'React. Please file an issue.',
);
}
通过 completeWork 处理副作用(如 DOM 节点创建),并连接兄弟节点形成树结构。
function completeWork(
current: Fiber | null,
workInProgress: Fiber,
renderLanes: Lanes,
): Fiber | null {
const newProps = workInProgress.pendingProps;
// Note: This intentionally doesn't check if we're hydrating because comparing
// to the current tree provider fiber is just as fast and less error-prone.
// Ideally we would have a special version of the work loop only
// for hydration.
popTreeContext(workInProgress);
switch (workInProgress.tag) {
case IncompleteFunctionComponent: {
if (disableLegacyMode) {
break;
}
// Fallthrough
}
case LazyComponent:
case SimpleMemoComponent:
case FunctionComponent:
case ForwardRef:
case Fragment:
case Mode:
case Profiler:
case ContextConsumer:
case MemoComponent:
bubbleProperties(workInProgress);
return null;
case ClassComponent: {
const Component = workInProgress.type;
if (isLegacyContextProvider(Component)) {
popLegacyContext(workInProgress);
}
bubbleProperties(workInProgress);
return null;
}
case HostRoot: {
const fiberRoot = (workInProgress.stateNode: FiberRoot);
if (enableTransitionTracing) {
const transitions = getWorkInProgressTransitions();
// We set the Passive flag here because if there are new transitions,
// we will need to schedule callbacks and process the transitions,
// which we do in the passive phase
if (transitions !== null) {
workInProgress.flags |= Passive;
}
}
let previousCache: Cache | null = null;
if (current !== null) {
previousCache = current.memoizedState.cache;
}
const cache: Cache = workInProgress.memoizedState.cache;
if (cache !== previousCache) {
// Run passive effects to retain/release the cache.
workInProgress.flags |= Passive;
}
popCacheProvider(workInProgress, cache);
if (enableTransitionTracing) {
popRootMarkerInstance(workInProgress);
}
popRootTransition(workInProgress, fiberRoot, renderLanes);
popHostContainer(workInProgress);
popTopLevelLegacyContextObject(workInProgress);
if (fiberRoot.pendingContext) {
fiberRoot.context = fiberRoot.pendingContext;
fiberRoot.pendingContext = null;
}
if (current === null || current.child === null) {
// If we hydrated, pop so that we can delete any remaining children
// that weren't hydrated.
const wasHydrated = popHydrationState(workInProgress);
if (wasHydrated) {
emitPendingHydrationWarnings();
// If we hydrated, then we'll need to schedule an update for
// the commit side-effects on the root.
markUpdate(workInProgress);
} else {
if (current !== null) {
const prevState: RootState = current.memoizedState;
if (
// Check if this is a client root
!prevState.isDehydrated ||
// Check if we reverted to client rendering (e.g. due to an error)
(workInProgress.flags & ForceClientRender) !== NoFlags
) {
// Schedule an effect to clear this container at the start of the
// next commit. This handles the case of React rendering into a
// container with previous children. It's also safe to do for
// updates too, because current.child would only be null if the
// previous render was null (so the container would already
// be empty).
workInProgress.flags |= Snapshot;
// If this was a forced client render, there may have been
// recoverable errors during first hydration attempt. If so, add
// them to a queue so we can log them in the commit phase.
upgradeHydrationErrorsToRecoverable();
}
}
}
}
updateHostContainer(current, workInProgress);
bubbleProperties(workInProgress);
if (enableTransitionTracing) {
if ((workInProgress.subtreeFlags & Visibility) !== NoFlags) {
// If any of our suspense children toggle visibility, this means that
// the pending boundaries array needs to be updated, which we only
// do in the passive phase.
workInProgress.flags |= Passive;
}
}
return null;
}
case HostHoistable: {
if (supportsResources) {
// The branching here is more complicated than you might expect because
// a HostHoistable sometimes corresponds to a Resource and sometimes
// corresponds to an Instance. It can also switch during an update.
const type = workInProgress.type;
const nextResource: Resource | null = workInProgress.memoizedState;
if (current === null) {
// We are mounting and must Update this Hoistable in this commit
// @TODO refactor this block to create the instance here in complete
// phase if we are not hydrating.
markUpdate(workInProgress);
if (nextResource !== null) {
// This is a Hoistable Resource
// This must come at the very end of the complete phase.
bubbleProperties(workInProgress);
preloadResourceAndSuspendIfNeeded(
workInProgress,
nextResource,
type,
newProps,
renderLanes,
);
return null;
} else {
// This is a Hoistable Instance
// This must come at the very end of the complete phase.
bubbleProperties(workInProgress);
preloadInstanceAndSuspendIfNeeded(
workInProgress,
type,
newProps,
renderLanes,
);
return null;
}
} else {
// This is an update.
if (nextResource) {
// This is a Resource
if (nextResource !== current.memoizedState) {
// we have a new Resource. we need to update
markUpdate(workInProgress);
// This must come at the very end of the complete phase.
bubbleProperties(workInProgress);
// This must come at the very end of the complete phase, because it might
// throw to suspend, and if the resource immediately loads, the work loop
// will resume rendering as if the work-in-progress completed. So it must
// fully complete.
preloadResourceAndSuspendIfNeeded(
workInProgress,
nextResource,
type,
newProps,
renderLanes,
);
return null;
} else {
// This must come at the very end of the complete phase.
bubbleProperties(workInProgress);
workInProgress.flags &= ~MaySuspendCommit;
return null;
}
} else {
// This is an Instance
// We may have props to update on the Hoistable instance.
if (supportsMutation) {
const oldProps = current.memoizedProps;
if (oldProps !== newProps) {
markUpdate(workInProgress);
}
} else {
// We use the updateHostComponent path becuase it produces
// the update queue we need for Hoistables.
updateHostComponent(
current,
workInProgress,
type,
newProps,
renderLanes,
);
}
// This must come at the very end of the complete phase.
bubbleProperties(workInProgress);
preloadInstanceAndSuspendIfNeeded(
workInProgress,
type,
newProps,
renderLanes,
);
return null;
}
}
}
// Fall through
}
case HostSingleton: {
if (supportsSingletons) {
popHostContext(workInProgress);
const rootContainerInstance = getRootHostContainer();
const type = workInProgress.type;
if (current !== null && workInProgress.stateNode != null) {
if (supportsMutation) {
const oldProps = current.memoizedProps;
if (oldProps !== newProps) {
markUpdate(workInProgress);
}
} else {
updateHostComponent(
current,
workInProgress,
type,
newProps,
renderLanes,
);
}
} else {
if (!newProps) {
if (workInProgress.stateNode === null) {
throw new Error(
'We must have new props for new mounts. This error is likely ' +
'caused by a bug in React. Please file an issue.',
);
}
// This can happen when we abort work.
bubbleProperties(workInProgress);
if (enableViewTransition) {
// Host Components act as their own View Transitions which doesn't run enter/exit animations.
// We clear any ViewTransitionStatic flag bubbled from inner View Transitions.
workInProgress.subtreeFlags &= ~ViewTransitionStatic;
}
return null;
}
const currentHostContext = getHostContext();
const wasHydrated = popHydrationState(workInProgress);
let instance: Instance;
if (wasHydrated) {
// We ignore the boolean indicating there is an updateQueue because
// it is used only to set text children and HostSingletons do not
// use them.
prepareToHydrateHostInstance(workInProgress, currentHostContext);
instance = workInProgress.stateNode;
} else {
instance = resolveSingletonInstance(
type,
newProps,
rootContainerInstance,
currentHostContext,
true,
);
workInProgress.stateNode = instance;
markUpdate(workInProgress);
}
}
bubbleProperties(workInProgress);
if (enableViewTransition) {
// Host Components act as their own View Transitions which doesn't run enter/exit animations.
// We clear any ViewTransitionStatic flag bubbled from inner View Transitions.
workInProgress.subtreeFlags &= ~ViewTransitionStatic;
}
return null;
}
// Fall through
}
case HostComponent: {
popHostContext(workInProgress);
const type = workInProgress.type;
if (current !== null && workInProgress.stateNode != null) {
updateHostComponent(
current,
workInProgress,
type,
newProps,
renderLanes,
);
} else {
if (!newProps) {
if (workInProgress.stateNode === null) {
throw new Error(
'We must have new props for new mounts. This error is likely ' +
'caused by a bug in React. Please file an issue.',
);
}
// This can happen when we abort work.
bubbleProperties(workInProgress);
if (enableViewTransition) {
// Host Components act as their own View Transitions which doesn't run enter/exit animations.
// We clear any ViewTransitionStatic flag bubbled from inner View Transitions.
workInProgress.subtreeFlags &= ~ViewTransitionStatic;
}
return null;
}
const currentHostContext = getHostContext();
// TODO: Move createInstance to beginWork and keep it on a context
// "stack" as the parent. Then append children as we go in beginWork
// or completeWork depending on whether we want to add them top->down or
// bottom->up. Top->down is faster in IE11.
const wasHydrated = popHydrationState(workInProgress);
if (wasHydrated) {
// TODO: Move this and createInstance step into the beginPhase
// to consolidate.
prepareToHydrateHostInstance(workInProgress, currentHostContext);
} else {
const rootContainerInstance = getRootHostContainer();
const instance = createInstance(
type,
newProps,
rootContainerInstance,
currentHostContext,
workInProgress,
);
// TODO: For persistent renderers, we should pass children as part
// of the initial instance creation
markCloned(workInProgress);
appendAllChildren(instance, workInProgress, false, false);
workInProgress.stateNode = instance;
// Certain renderers require commit-time effects for initial mount.
// (eg DOM renderer supports auto-focus for certain elements).
// Make sure such renderers get scheduled for later work.
if (
finalizeInitialChildren(
instance,
type,
newProps,
currentHostContext,
)
) {
markUpdate(workInProgress);
}
}
}
bubbleProperties(workInProgress);
if (enableViewTransition) {
// Host Components act as their own View Transitions which doesn't run enter/exit animations.
// We clear any ViewTransitionStatic flag bubbled from inner View Transitions.
workInProgress.subtreeFlags &= ~ViewTransitionStatic;
}
// This must come at the very end of the complete phase, because it might
// throw to suspend, and if the resource immediately loads, the work loop
// will resume rendering as if the work-in-progress completed. So it must
// fully complete.
preloadInstanceAndSuspendIfNeeded(
workInProgress,
workInProgress.type,
workInProgress.pendingProps,
renderLanes,
);
return null;
}
case HostText: {
const newText = newProps;
if (current && workInProgress.stateNode != null) {
const oldText = current.memoizedProps;
// If we have an alternate, that means this is an update and we need
// to schedule a side-effect to do the updates.
updateHostText(current, workInProgress, oldText, newText);
} else {
if (typeof newText !== 'string') {
if (workInProgress.stateNode === null) {
throw new Error(
'We must have new props for new mounts. This error is likely ' +
'caused by a bug in React. Please file an issue.',
);
}
// This can happen when we abort work.
}
const rootContainerInstance = getRootHostContainer();
const currentHostContext = getHostContext();
const wasHydrated = popHydrationState(workInProgress);
if (wasHydrated) {
prepareToHydrateHostTextInstance(workInProgress);
} else {
markCloned(workInProgress);
workInProgress.stateNode = createTextInstance(
newText,
rootContainerInstance,
currentHostContext,
workInProgress,
);
}
}
bubbleProperties(workInProgress);
return null;
}
case SuspenseComponent: {
const nextState: null | SuspenseState = workInProgress.memoizedState;
// Special path for dehydrated boundaries. We may eventually move this
// to its own fiber type so that we can add other kinds of hydration
// boundaries that aren't associated with a Suspense tree. In anticipation
// of such a refactor, all the hydration logic is contained in
// this branch.
if (
current === null ||
(current.memoizedState !== null &&
current.memoizedState.dehydrated !== null)
) {
const fallthroughToNormalSuspensePath =
completeDehydratedSuspenseBoundary(
current,
workInProgress,
nextState,
);
if (!fallthroughToNormalSuspensePath) {
if (workInProgress.flags & ForceClientRender) {
popSuspenseHandler(workInProgress);
// Special case. There were remaining unhydrated nodes. We treat
// this as a mismatch. Revert to client rendering.
return workInProgress;
} else {
popSuspenseHandler(workInProgress);
// Did not finish hydrating, either because this is the initial
// render or because something suspended.
return null;
}
}
// Continue with the normal Suspense path.
}
popSuspenseHandler(workInProgress);
if ((workInProgress.flags & DidCapture) !== NoFlags) {
// Something suspended. Re-render with the fallback children.
workInProgress.lanes = renderLanes;
// Do not reset the effect list.
if (
enableProfilerTimer &&
(workInProgress.mode & ProfileMode) !== NoMode
) {
transferActualDuration(workInProgress);
}
// Don't bubble properties in this case.
return workInProgress;
}
const nextDidTimeout = nextState !== null;
const prevDidTimeout =
current !== null &&
(current.memoizedState: null | SuspenseState) !== null;
if (nextDidTimeout) {
const offscreenFiber: Fiber = (workInProgress.child: any);
let previousCache: Cache | null = null;
if (
offscreenFiber.alternate !== null &&
offscreenFiber.alternate.memoizedState !== null &&
offscreenFiber.alternate.memoizedState.cachePool !== null
) {
previousCache = offscreenFiber.alternate.memoizedState.cachePool.pool;
}
let cache: Cache | null = null;
if (
offscreenFiber.memoizedState !== null &&
offscreenFiber.memoizedState.cachePool !== null
) {
cache = offscreenFiber.memoizedState.cachePool.pool;
}
if (cache !== previousCache) {
// Run passive effects to retain/release the cache.
offscreenFiber.flags |= Passive;
}
}
// If the suspended state of the boundary changes, we need to schedule
// a passive effect, which is when we process the transitions
if (nextDidTimeout !== prevDidTimeout) {
if (enableTransitionTracing) {
const offscreenFiber: Fiber = (workInProgress.child: any);
offscreenFiber.flags |= Passive;
}
// If the suspended state of the boundary changes, we need to schedule
// an effect to toggle the subtree's visibility. When we switch from
// fallback -> primary, the inner Offscreen fiber schedules this effect
// as part of its normal complete phase. But when we switch from
// primary -> fallback, the inner Offscreen fiber does not have a complete
// phase. So we need to schedule its effect here.
//
// We also use this flag to connect/disconnect the effects, but the same
// logic applies: when re-connecting, the Offscreen fiber's complete
// phase will handle scheduling the effect. It's only when the fallback
// is active that we have to do anything special.
if (nextDidTimeout) {
const offscreenFiber: Fiber = (workInProgress.child: any);
offscreenFiber.flags |= Visibility;
}
}
const retryQueue: RetryQueue | null = (workInProgress.updateQueue: any);
scheduleRetryEffect(workInProgress, retryQueue);
if (
enableSuspenseCallback &&
workInProgress.updateQueue !== null &&
workInProgress.memoizedProps.suspenseCallback != null
) {
// Always notify the callback
// TODO: Move to passive phase
workInProgress.flags |= Update;
}
bubbleProperties(workInProgress);
if (enableProfilerTimer) {
if ((workInProgress.mode & ProfileMode) !== NoMode) {
if (nextDidTimeout) {
// Don't count time spent in a timed out Suspense subtree as part of the base duration.
const primaryChildFragment = workInProgress.child;
if (primaryChildFragment !== null) {
// $FlowFixMe[unsafe-arithmetic] Flow doesn't support type casting in combination with the -= operator
workInProgress.treeBaseDuration -=
((primaryChildFragment.treeBaseDuration: any): number);
}
}
}
}
return null;
}
case HostPortal:
popHostContainer(workInProgress);
updateHostContainer(current, workInProgress);
if (current === null) {
preparePortalMount(workInProgress.stateNode.containerInfo);
}
bubbleProperties(workInProgress);
return null;
case ContextProvider:
// Pop provider fiber
let context: ReactContext<any>;
if (enableRenderableContext) {
context = workInProgress.type;
} else {
context = workInProgress.type._context;
}
popProvider(context, workInProgress);
bubbleProperties(workInProgress);
return null;
case IncompleteClassComponent: {
if (disableLegacyMode) {
break;
}
// Same as class component case. I put it down here so that the tags are
// sequential to ensure this switch is compiled to a jump table.
const Component = workInProgress.type;
if (isLegacyContextProvider(Component)) {
popLegacyContext(workInProgress);
}
bubbleProperties(workInProgress);
return null;
}
case SuspenseListComponent: {
popSuspenseListContext(workInProgress);
const renderState: null | SuspenseListRenderState =
workInProgress.memoizedState;
if (renderState === null) {
// We're running in the default, "independent" mode.
// We don't do anything in this mode.
bubbleProperties(workInProgress);
return null;
}
let didSuspendAlready = (workInProgress.flags & DidCapture) !== NoFlags;
const renderedTail = renderState.rendering;
if (renderedTail === null) {
// We just rendered the head.
if (!didSuspendAlready) {
// This is the first pass. We need to figure out if anything is still
// suspended in the rendered set.
// If new content unsuspended, but there's still some content that
// didn't. Then we need to do a second pass that forces everything
// to keep showing their fallbacks.
// We might be suspended if something in this render pass suspended, or
// something in the previous committed pass suspended. Otherwise,
// there's no chance so we can skip the expensive call to
// findFirstSuspended.
const cannotBeSuspended =
renderHasNotSuspendedYet() &&
(current === null || (current.flags & DidCapture) === NoFlags);
if (!cannotBeSuspended) {
let row = workInProgress.child;
while (row !== null) {
const suspended = findFirstSuspended(row);
if (suspended !== null) {
didSuspendAlready = true;
workInProgress.flags |= DidCapture;
cutOffTailIfNeeded(renderState, false);
// If this is a newly suspended tree, it might not get committed as
// part of the second pass. In that case nothing will subscribe to
// its thenables. Instead, we'll transfer its thenables to the
// SuspenseList so that it can retry if they resolve.
// There might be multiple of these in the list but since we're
// going to wait for all of them anyway, it doesn't really matter
// which ones gets to ping. In theory we could get clever and keep
// track of how many dependencies remain but it gets tricky because
// in the meantime, we can add/remove/change items and dependencies.
// We might bail out of the loop before finding any but that
// doesn't matter since that means that the other boundaries that
// we did find already has their listeners attached.
const retryQueue: RetryQueue | null =
(suspended.updateQueue: any);
workInProgress.updateQueue = retryQueue;
scheduleRetryEffect(workInProgress, retryQueue);
// Rerender the whole list, but this time, we'll force fallbacks
// to stay in place.
// Reset the effect flags before doing the second pass since that's now invalid.
// Reset the child fibers to their original state.
workInProgress.subtreeFlags = NoFlags;
resetChildFibers(workInProgress, renderLanes);
// Set up the Suspense List Context to force suspense and
// immediately rerender the children.
pushSuspenseListContext(
workInProgress,
setShallowSuspenseListContext(
suspenseStackCursor.current,
ForceSuspenseFallback,
),
);
// Don't bubble properties in this case.
return workInProgress.child;
}
row = row.sibling;
}
}
if (renderState.tail !== null && now() > getRenderTargetTime()) {
// We have already passed our CPU deadline but we still have rows
// left in the tail. We'll just give up further attempts to render
// the main content and only render fallbacks.
workInProgress.flags |= DidCapture;
didSuspendAlready = true;
cutOffTailIfNeeded(renderState, false);
// Since nothing actually suspended, there will nothing to ping this
// to get it started back up to attempt the next item. While in terms
// of priority this work has the same priority as this current render,
// it's not part of the same transition once the transition has
// committed. If it's sync, we still want to yield so that it can be
// painted. Conceptually, this is really the same as pinging.
// We can use any RetryLane even if it's the one currently rendering
// since we're leaving it behind on this node.
workInProgress.lanes = SomeRetryLane;
}
} else {
cutOffTailIfNeeded(renderState, false);
}
// Next we're going to render the tail.
} else {
// Append the rendered row to the child list.
if (!didSuspendAlready) {
const suspended = findFirstSuspended(renderedTail);
if (suspended !== null) {
workInProgress.flags |= DidCapture;
didSuspendAlready = true;
// Ensure we transfer the update queue to the parent so that it doesn't
// get lost if this row ends up dropped during a second pass.
const retryQueue: RetryQueue | null = (suspended.updateQueue: any);
workInProgress.updateQueue = retryQueue;
scheduleRetryEffect(workInProgress, retryQueue);
cutOffTailIfNeeded(renderState, true);
// This might have been modified.
if (
renderState.tail === null &&
renderState.tailMode === 'hidden' &&
!renderedTail.alternate &&
!getIsHydrating() // We don't cut it if we're hydrating.
) {
// We're done.
bubbleProperties(workInProgress);
return null;
}
} else if (
// The time it took to render last row is greater than the remaining
// time we have to render. So rendering one more row would likely
// exceed it.
now() * 2 - renderState.renderingStartTime >
getRenderTargetTime() &&
renderLanes !== OffscreenLane
) {
// We have now passed our CPU deadline and we'll just give up further
// attempts to render the main content and only render fallbacks.
// The assumption is that this is usually faster.
workInProgress.flags |= DidCapture;
didSuspendAlready = true;
cutOffTailIfNeeded(renderState, false);
// Since nothing actually suspended, there will nothing to ping this
// to get it started back up to attempt the next item. While in terms
// of priority this work has the same priority as this current render,
// it's not part of the same transition once the transition has
// committed. If it's sync, we still want to yield so that it can be
// painted. Conceptually, this is really the same as pinging.
// We can use any RetryLane even if it's the one currently rendering
// since we're leaving it behind on this node.
workInProgress.lanes = SomeRetryLane;
}
}
if (renderState.isBackwards) {
// The effect list of the backwards tail will have been added
// to the end. This breaks the guarantee that life-cycles fire in
// sibling order but that isn't a strong guarantee promised by React.
// Especially since these might also just pop in during future commits.
// Append to the beginning of the list.
renderedTail.sibling = workInProgress.child;
workInProgress.child = renderedTail;
} else {
const previousSibling = renderState.last;
if (previousSibling !== null) {
previousSibling.sibling = renderedTail;
} else {
workInProgress.child = renderedTail;
}
renderState.last = renderedTail;
}
}
if (renderState.tail !== null) {
// We still have tail rows to render.
// Pop a row.
const next = renderState.tail;
renderState.rendering = next;
renderState.tail = next.sibling;
renderState.renderingStartTime = now();
next.sibling = null;
// Restore the context.
// TODO: We can probably just avoid popping it instead and only
// setting it the first time we go from not suspended to suspended.
let suspenseContext = suspenseStackCursor.current;
if (didSuspendAlready) {
suspenseContext = setShallowSuspenseListContext(
suspenseContext,
ForceSuspenseFallback,
);
} else {
suspenseContext =
setDefaultShallowSuspenseListContext(suspenseContext);
}
pushSuspenseListContext(workInProgress, suspenseContext);
// Do a pass over the next row.
// Don't bubble properties in this case.
return next;
}
bubbleProperties(workInProgress);
return null;
}
case ScopeComponent: {
if (enableScopeAPI) {
if (current === null) {
const scopeInstance: ReactScopeInstance = createScopeInstance();
workInProgress.stateNode = scopeInstance;
prepareScopeUpdate(scopeInstance, workInProgress);
if (workInProgress.ref !== null) {
// Scope components always do work in the commit phase if there's a
// ref attached.
markUpdate(workInProgress);
}
} else {
if (workInProgress.ref !== null) {
// Scope components always do work in the commit phase if there's a
// ref attached.
markUpdate(workInProgress);
}
}
bubbleProperties(workInProgress);
return null;
}
break;
}
case OffscreenComponent:
case LegacyHiddenComponent: {
popSuspenseHandler(workInProgress);
popHiddenContext(workInProgress);
const nextState: OffscreenState | null = workInProgress.memoizedState;
const nextIsHidden = nextState !== null;
// Schedule a Visibility effect if the visibility has changed
if (enableLegacyHidden && workInProgress.tag === LegacyHiddenComponent) {
// LegacyHidden doesn't do any hiding — it only pre-renders.
} else {
if (current !== null) {
const prevState: OffscreenState | null = current.memoizedState;
const prevIsHidden = prevState !== null;
if (prevIsHidden !== nextIsHidden) {
workInProgress.flags |= Visibility;
}
} else {
// On initial mount, we only need a Visibility effect if the tree
// is hidden.
if (nextIsHidden) {
workInProgress.flags |= Visibility;
}
}
}
if (
!nextIsHidden ||
(!disableLegacyMode &&
(workInProgress.mode & ConcurrentMode) === NoMode)
) {
bubbleProperties(workInProgress);
} else {
// Don't bubble properties for hidden children unless we're rendering
// at offscreen priority.
if (
includesSomeLane(renderLanes, (OffscreenLane: Lane)) &&
// Also don't bubble if the tree suspended
(workInProgress.flags & DidCapture) === NoLanes
) {
bubbleProperties(workInProgress);
// Check if there was an insertion or update in the hidden subtree.
// If so, we need to hide those nodes in the commit phase, so
// schedule a visibility effect.
if (
(!enableLegacyHidden ||
workInProgress.tag !== LegacyHiddenComponent) &&
workInProgress.subtreeFlags & (Placement | Update)
) {
workInProgress.flags |= Visibility;
}
}
}
const offscreenQueue: OffscreenQueue | null =
(workInProgress.updateQueue: any);
if (offscreenQueue !== null) {
const retryQueue = offscreenQueue.retryQueue;
scheduleRetryEffect(workInProgress, retryQueue);
}
let previousCache: Cache | null = null;
if (
current !== null &&
current.memoizedState !== null &&
current.memoizedState.cachePool !== null
) {
previousCache = current.memoizedState.cachePool.pool;
}
let cache: Cache | null = null;
if (
workInProgress.memoizedState !== null &&
workInProgress.memoizedState.cachePool !== null
) {
cache = workInProgress.memoizedState.cachePool.pool;
}
if (cache !== previousCache) {
// Run passive effects to retain/release the cache.
workInProgress.flags |= Passive;
}
popTransition(workInProgress, current);
return null;
}
case CacheComponent: {
let previousCache: Cache | null = null;
if (current !== null) {
previousCache = current.memoizedState.cache;
}
const cache: Cache = workInProgress.memoizedState.cache;
if (cache !== previousCache) {
// Run passive effects to retain/release the cache.
workInProgress.flags |= Passive;
}
popCacheProvider(workInProgress, cache);
bubbleProperties(workInProgress);
return null;
}
case TracingMarkerComponent: {
if (enableTransitionTracing) {
const instance: TracingMarkerInstance | null = workInProgress.stateNode;
if (instance !== null) {
popMarkerInstance(workInProgress);
}
bubbleProperties(workInProgress);
}
return null;
}
case ViewTransitionComponent: {
if (enableViewTransition) {
// We're a component that might need an exit transition. This flag will
// bubble up to the parent tree to indicate that there's a child that
// might need an exit View Transition upon unmount.
workInProgress.flags |= ViewTransitionStatic;
bubbleProperties(workInProgress);
}
return null;
}
case Throw: {
if (!disableLegacyMode) {
// Only Legacy Mode completes an errored node.
return null;
}
}
}
throw new Error(
`Unknown unit of work tag (${workInProgress.tag}). This error is likely caused by a bug in ` +
'React. Please file an issue.',
);
}
3. 差异比较(Diff 算法)
对比新旧虚拟 DOM,标记节点更新类型(如插入、更新、删除),生成 effectTag 标识。
4. 生成 Effect List
将带有副作用的 Fiber 节点(如需要 DOM 操作)连接成链表形式的 effectList,供提交阶段使用。
function reconcileChildrenArray(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
newChildren: Array<any>,
lanes: Lanes,
): Fiber | null {
// This algorithm can't optimize by searching from both ends since we
// don't have backpointers on fibers. I'm trying to see how far we can get
// with that model. If it ends up not being worth the tradeoffs, we can
// add it later.
// Even with a two ended optimization, we'd want to optimize for the case
// where there are few changes and brute force the comparison instead of
// going for the Map. It'd like to explore hitting that path first in
// forward-only mode and only go for the Map once we notice that we need
// lots of look ahead. This doesn't handle reversal as well as two ended
// search but that's unusual. Besides, for the two ended optimization to
// work on Iterables, we'd need to copy the whole set.
// In this first iteration, we'll just live with hitting the bad case
// (adding everything to a Map) in for every insert/move.
// If you change this code, also update reconcileChildrenIterator() which
// uses the same algorithm.
let knownKeys: Set<string> | null = null;
let resultingFirstChild: Fiber | null = null;
let previousNewFiber: Fiber | null = null;
let oldFiber = currentFirstChild;
let lastPlacedIndex = 0;
let newIdx = 0;
let nextOldFiber = null;
for (; oldFiber !== null && newIdx < newChildren.length; newIdx++) {
if (oldFiber.index > newIdx) {
nextOldFiber = oldFiber;
oldFiber = null;
} else {
nextOldFiber = oldFiber.sibling;
}
const newFiber = updateSlot(
returnFiber,
oldFiber,
newChildren[newIdx],
lanes,
);
if (newFiber === null) {
// TODO: This breaks on empty slots like null children. That's
// unfortunate because it triggers the slow path all the time. We need
// a better way to communicate whether this was a miss or null,
// boolean, undefined, etc.
if (oldFiber === null) {
oldFiber = nextOldFiber;
}
break;
}
if (__DEV__) {
knownKeys = warnOnInvalidKey(
returnFiber,
newFiber,
newChildren[newIdx],
knownKeys,
);
}
if (shouldTrackSideEffects) {
if (oldFiber && newFiber.alternate === null) {
// We matched the slot, but we didn't reuse the existing fiber, so we
// need to delete the existing child.
deleteChild(returnFiber, oldFiber);
}
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
if (previousNewFiber === null) {
// TODO: Move out of the loop. This only happens for the first run.
resultingFirstChild = newFiber;
} else {
// TODO: Defer siblings if we're not at the right index for this slot.
// I.e. if we had null values before, then we want to defer this
// for each null value. However, we also don't want to call updateSlot
// with the previous one.
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
oldFiber = nextOldFiber;
}
if (newIdx === newChildren.length) {
// We've reached the end of the new children. We can delete the rest.
deleteRemainingChildren(returnFiber, oldFiber);
if (getIsHydrating()) {
const numberOfForks = newIdx;
pushTreeFork(returnFiber, numberOfForks);
}
return resultingFirstChild;
}
if (oldFiber === null) {
// If we don't have any more existing children we can choose a fast path
// since the rest will all be insertions.
for (; newIdx < newChildren.length; newIdx++) {
const newFiber = createChild(returnFiber, newChildren[newIdx], lanes);
if (newFiber === null) {
continue;
}
if (__DEV__) {
knownKeys = warnOnInvalidKey(
returnFiber,
newFiber,
newChildren[newIdx],
knownKeys,
);
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
if (previousNewFiber === null) {
// TODO: Move out of the loop. This only happens for the first run.
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
if (getIsHydrating()) {
const numberOfForks = newIdx;
pushTreeFork(returnFiber, numberOfForks);
}
return resultingFirstChild;
}
// Add all children to a key map for quick lookups.
const existingChildren = mapRemainingChildren(oldFiber);
// Keep scanning and use the map to restore deleted items as moves.
for (; newIdx < newChildren.length; newIdx++) {
const newFiber = updateFromMap(
existingChildren,
returnFiber,
newIdx,
newChildren[newIdx],
lanes,
);
if (newFiber !== null) {
if (__DEV__) {
knownKeys = warnOnInvalidKey(
returnFiber,
newFiber,
newChildren[newIdx],
knownKeys,
);
}
if (shouldTrackSideEffects) {
if (newFiber.alternate !== null) {
// The new fiber is a work in progress, but if there exists a
// current, that means that we reused the fiber. We need to delete
// it from the child list so that we don't add it to the deletion
// list.
existingChildren.delete(
newFiber.key === null ? newIdx : newFiber.key,
);
}
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
}
if (shouldTrackSideEffects) {
// Any existing children that weren't consumed above were deleted. We need
// to add them to the deletion list.
existingChildren.forEach(child => deleteChild(returnFiber, child));
}
if (getIsHydrating()) {
const numberOfForks = newIdx;
pushTreeFork(returnFiber, numberOfForks);
}
return resultingFirstChild;
}
三、输出阶段(Commit Phase)
- 提交副作用
遍历effectList,根据effectTag调用渲染器(如 ReactDOM)执行 DOM 更新、生命周期函数等操作。 - 切换 Fiber 树
将workInProgressFiber 树设置为新的current树,完成双缓冲切换。
function commitRoot(
root: FiberRoot,
finishedWork: null | Fiber,
lanes: Lanes,
recoverableErrors: null | Array<CapturedValue<mixed>>,
transitions: Array<Transition> | null,
didIncludeRenderPhaseUpdate: boolean,
spawnedLane: Lane,
updatedLanes: Lanes,
suspendedRetryLanes: Lanes,
exitStatus: RootExitStatus,
suspendedCommitReason: SuspendedCommitReason, // Profiling-only
completedRenderStartTime: number, // Profiling-only
completedRenderEndTime: number, // Profiling-only
): void {
root.cancelPendingCommit = null;
do {
// `flushPassiveEffects` will call `flushSyncUpdateQueue` at the end, which
// means `flushPassiveEffects` will sometimes result in additional
// passive effects. So we need to keep flushing in a loop until there are
// no more pending effects.
// TODO: Might be better if `flushPassiveEffects` did not automatically
// flush synchronous work at the end, to avoid factoring hazards like this.
flushPendingEffects();
} while (pendingEffectsStatus !== NO_PENDING_EFFECTS);
flushRenderPhaseStrictModeWarningsInDEV();
if ((executionContext & (RenderContext | CommitContext)) !== NoContext) {
throw new Error('Should not already be working.');
}
if (enableProfilerTimer && enableComponentPerformanceTrack) {
// Log the previous render phase once we commit. I.e. we weren't interrupted.
setCurrentTrackFromLanes(lanes);
if (exitStatus === RootErrored) {
logErroredRenderPhase(
completedRenderStartTime,
completedRenderEndTime,
lanes,
);
} else if (recoverableErrors !== null) {
const hydrationFailed =
finishedWork !== null &&
finishedWork.alternate !== null &&
(finishedWork.alternate.memoizedState: RootState).isDehydrated &&
(finishedWork.flags & ForceClientRender) !== NoFlags;
logRecoveredRenderPhase(
completedRenderStartTime,
completedRenderEndTime,
lanes,
recoverableErrors,
hydrationFailed,
);
} else {
logRenderPhase(completedRenderStartTime, completedRenderEndTime, lanes);
}
}
if (enableSchedulingProfiler) {
markCommitStarted(lanes);
}
if (finishedWork === null) {
if (enableSchedulingProfiler) {
markCommitStopped();
}
return;
} else {
if (__DEV__) {
if (lanes === NoLanes) {
console.error(
'finishedLanes should not be empty during a commit. This is a ' +
'bug in React.',
);
}
}
}
if (finishedWork === root.current) {
throw new Error(
'Cannot commit the same tree as before. This error is likely caused by ' +
'a bug in React. Please file an issue.',
);
}
// Check which lanes no longer have any work scheduled on them, and mark
// those as finished.
let remainingLanes = mergeLanes(finishedWork.lanes, finishedWork.childLanes);
// Make sure to account for lanes that were updated by a concurrent event
// during the render phase; don't mark them as finished.
const concurrentlyUpdatedLanes = getConcurrentlyUpdatedLanes();
remainingLanes = mergeLanes(remainingLanes, concurrentlyUpdatedLanes);
markRootFinished(
root,
lanes,
remainingLanes,
spawnedLane,
updatedLanes,
suspendedRetryLanes,
);
// Reset this before firing side effects so we can detect recursive updates.
didIncludeCommitPhaseUpdate = false;
if (root === workInProgressRoot) {
// We can reset these now that they are finished.
workInProgressRoot = null;
workInProgress = null;
workInProgressRootRenderLanes = NoLanes;
} else {
// This indicates that the last root we worked on is not the same one that
// we're committing now. This most commonly happens when a suspended root
// times out.
}
// workInProgressX might be overwritten, so we want
// to store it in pendingPassiveX until they get processed
// We need to pass this through as an argument to commitRoot
// because workInProgressX might have changed between
// the previous render and commit if we throttle the commit
// with setTimeout
pendingFinishedWork = finishedWork;
pendingEffectsRoot = root;
pendingEffectsLanes = lanes;
pendingEffectsRemainingLanes = remainingLanes;
pendingPassiveTransitions = transitions;
pendingRecoverableErrors = recoverableErrors;
pendingDidIncludeRenderPhaseUpdate = didIncludeRenderPhaseUpdate;
if (enableProfilerTimer) {
pendingEffectsRenderEndTime = completedRenderEndTime;
pendingSuspendedCommitReason = suspendedCommitReason;
}
// If there are pending passive effects, schedule a callback to process them.
// Do this as early as possible, so it is queued before anything else that
// might get scheduled in the commit phase. (See #16714.)
// TODO: Delete all other places that schedule the passive effect callback
// They're redundant.
let passiveSubtreeMask;
if (enableViewTransition) {
pendingViewTransitionEvents = null;
if (includesOnlyViewTransitionEligibleLanes(lanes)) {
// Claim any pending Transition Types for this commit.
// This means that multiple roots committing independent View Transitions
// 1) end up staggered because we can only have one at a time.
// 2) only the first one gets all the Transition Types.
pendingTransitionTypes = ReactSharedInternals.V;
ReactSharedInternals.V = null;
passiveSubtreeMask = PassiveTransitionMask;
} else {
pendingTransitionTypes = null;
passiveSubtreeMask = PassiveMask;
}
} else {
passiveSubtreeMask = PassiveMask;
}
if (
// If this subtree rendered with profiling this commit, we need to visit it to log it.
(enableProfilerTimer &&
enableComponentPerformanceTrack &&
finishedWork.actualDuration !== 0) ||
(finishedWork.subtreeFlags & passiveSubtreeMask) !== NoFlags ||
(finishedWork.flags & passiveSubtreeMask) !== NoFlags
) {
if (enableYieldingBeforePassive) {
// We don't schedule a separate task for flushing passive effects.
// Instead, we just rely on ensureRootIsScheduled below to schedule
// a callback for us to flush the passive effects.
} else {
// So we can clear these now to allow a new callback to be scheduled.
root.callbackNode = null;
root.callbackPriority = NoLane;
scheduleCallback(NormalSchedulerPriority, () => {
if (enableProfilerTimer && enableComponentPerformanceTrack) {
// Track the currently executing event if there is one so we can ignore this
// event when logging events.
trackSchedulerEvent();
}
flushPassiveEffects(true);
// This render triggered passive effects: release the root cache pool
// *after* passive effects fire to avoid freeing a cache pool that may
// be referenced by a node in the tree (HostRoot, Cache boundary etc)
return null;
});
}
} else {
// If we don't have passive effects, we're not going to need to perform more work
// so we can clear the callback now.
root.callbackNode = null;
root.callbackPriority = NoLane;
}
if (enableProfilerTimer) {
// Mark the current commit time to be shared by all Profilers in this
// batch. This enables them to be grouped later.
resetCommitErrors();
recordCommitTime();
if (enableComponentPerformanceTrack) {
if (suspendedCommitReason === SUSPENDED_COMMIT) {
logSuspendedCommitPhase(completedRenderEndTime, commitStartTime);
} else if (suspendedCommitReason === THROTTLED_COMMIT) {
logSuspenseThrottlePhase(completedRenderEndTime, commitStartTime);
}
}
}
// The commit phase is broken into several sub-phases. We do a separate pass
// of the effect list for each phase: all mutation effects come before all
// layout effects, and so on.
// Check if there are any effects in the whole tree.
// TODO: This is left over from the effect list implementation, where we had
// to check for the existence of `firstEffect` to satisfy Flow. I think the
// only other reason this optimization exists is because it affects profiling.
// Reconsider whether this is necessary.
const subtreeHasBeforeMutationEffects =
(finishedWork.subtreeFlags & (BeforeMutationMask | MutationMask)) !==
NoFlags;
const rootHasBeforeMutationEffect =
(finishedWork.flags & (BeforeMutationMask | MutationMask)) !== NoFlags;
if (subtreeHasBeforeMutationEffects || rootHasBeforeMutationEffect) {
const prevTransition = ReactSharedInternals.T;
ReactSharedInternals.T = null;
const previousPriority = getCurrentUpdatePriority();
setCurrentUpdatePriority(DiscreteEventPriority);
const prevExecutionContext = executionContext;
executionContext |= CommitContext;
try {
// The first phase a "before mutation" phase. We use this phase to read the
// state of the host tree right before we mutate it. This is where
// getSnapshotBeforeUpdate is called.
commitBeforeMutationEffects(root, finishedWork, lanes);
} finally {
// Reset the priority to the previous non-sync value.
executionContext = prevExecutionContext;
setCurrentUpdatePriority(previousPriority);
ReactSharedInternals.T = prevTransition;
}
}
pendingEffectsStatus = PENDING_MUTATION_PHASE;
const startedViewTransition =
enableViewTransition &&
shouldStartViewTransition &&
startViewTransition(
root.containerInfo,
pendingTransitionTypes,
flushMutationEffects,
flushLayoutEffects,
flushAfterMutationEffects,
flushSpawnedWork,
flushPassiveEffects,
);
if (!startedViewTransition) {
// Flush synchronously.
flushMutationEffects();
flushLayoutEffects();
// Skip flushAfterMutationEffects
flushSpawnedWork();
}
}
通过以上流程,React Reconciler 实现了高效、可中断、跨平台的组件更新机制,成为 React 高性能渲染的核心基础