import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchinfo import summary
import warnings
from datetime import datetime
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device, 'device')
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
batch_size = 32
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
imgs, labels = next(iter(train_dl))
print(imgs.shape)
print(labels.shape)

# 打印数据
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
npimg = imgs.numpy().transpose((1, 2, 0))
plt.subplot(2, 10, i + 1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
plt.show()
number_classes = 10
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, number_classes)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model().to(device)
summary(model)
```
loss_fn = nn.CrossEntropyLoss()
lr = 1e-2
opt = torch.optim.SGD(model.parameters(), lr=lr)
```

def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
batch_num = len(dataloader)
total_loss, pre_right_count = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
pre_right_count += (pred.argmax(1) == y).type(torch.float).sum().item()
train_acc = pre_right_count / size
train_loss = total_loss / batch_num
return train_acc, train_loss
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
total_loss, pred_right_count = 0, 0
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
pred = model(imgs)
loss = loss_fn(pred, target)
pred_right_count += (pred.argmax(1) == target).type(torch.float).sum().item()
total_loss += loss.item()
test_loss = total_loss / num_batches
test_acc = pred_right_count / size
return test_acc, test_loss
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
e_train_acc, e_train_loss = train(train_dl, model, loss_fn, opt)
print(f'epoch:{epoch + 1} Train Complete')
model.eval()
e_test_acc, e_test_loss = test(test_dl, model, loss_fn)
train_acc.append(e_train_acc)
train_loss.append(e_train_loss)
test_acc.append(e_test_acc)
test_loss.append(e_test_loss)
print('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f} Test_acc:{:.1f}% Test_loss:{:.3f}'.format(epoch + 1,
e_train_acc * 100,
e_train_loss,
e_test_acc * 100,
e_test_loss))
print('Train Done')

warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 100
current_time = datetime.now()
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time)
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
