零基础教程:如何创建专属个性化知识库,保护数据隐私,使用离线部署DeepSeek R1大模型的自己知识库 #人工智能 #ai #chatgpt #大模型 #deepseek youtu.be/6VpktyA8djA 【博客(国内) 】► amclubss.com/deepseek-kn… 【博客(国际) 】► amclubs.blogspot.com/2025/02/dee…
《部署教程说明》 个性化知识库:想要一个完全属于自己的智能知识库吗?在本视频中,您将掌握如何利用DeepSeek R1大模型创建一个完全个性化的知识管理系统。#个性化知识库 #DeepSeekR1 #本地AI部署 #AI教程 # 一、准备工作 `①` **注册地址** 👉 [点击进入官网注册](https://chat.deepseek.com/sign_up)② 本地部署 工具Ollama
一个免费使用、本地运行、具有隐私意识的聊天机器人。无需 GPU 或互联网。
👉 Ollama安装和使用视频教程
👉 Ollama安装 + 网页插件视频教程
👉 点击官网下载Ollama地址
部署命令:
1.5B Qwen DeepSeek R1
ollama run deepseek-r1:1.5b
7B Qwen DeepSeek R1
ollama run deepseek-r1:7b
8B Llama DeepSeek R1
ollama run deepseek-r1:8b
14B Qwen DeepSeek R1
ollama run deepseek-r1:14b
32B Qwen DeepSeek R1
ollama run deepseek-r1:32b
70B Llama DeepSeek R1
ollama run deepseek-r1:70b
二、硬件配置说明
- Windows 配置: 最低要求:NVIDIA GTX 1650 4GB 或 AMD RX 5500 4GB,16GB 内存,50GB 存储空间 推荐配置:NVIDIA RTX 3060 12GB 或 AMD RX 6700 10GB,32GB 内存,100GB NVMe SSD 高性能配置:NVIDIA RTX 3090 24GB 或 AMD RX 7900 XTX 24GB,64GB 内存,200GB NVMe SSD
- Linux 配置: 最低要求:NVIDIA GTX 1660 6GB 或 AMD RX 5500 4GB,16GB 内存,50GB 存储空间 推荐配置:NVIDIA RTX 3060 12GB 或 AMD RX 6700 10GB,32GB 内存,100GB NVMe SSD 高性能配置:NVIDIA A100 40GB 或 AMD MI250X 128GB,128GB 内存,200GB NVMe SSD
- Mac 配置: 最低要求:M2 MacBook Air(8GB 内存) 推荐配置:M2/M3 MacBook Pro(16GB 内存) 高性能配置:M2 Max/Ultra Mac Studio(64GB 内存) 可根据下表配置选择使用自己的模型
| 模型名称 | 参数量 | 大小 | VRAM (Approx.) | 推荐 Mac 配置 | 推荐 Windows/Linux 配置 |
|---|---|---|---|---|---|
| deepseek-r1:1.5b | 1.5B | 1.1 GB | ~2 GB | M2/M3 MacBook Air (8GB RAM+) | NVIDIA GTX 1650 4GB / AMD RX 5500 4GB (16GB RAM+) |
| deepseek-r1:7b | 7B | 4.7 GB | ~5 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 8GB / AMD RX 6600 8GB (16GB RAM+) |
| deepseek-r1:8b | 8B | 4.9 GB | ~6 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 Ti 8GB / AMD RX 6700 10GB (16GB RAM+) |
| deepseek-r1:14b | 14B | 9.0 GB | ~10 GB | M2/M3/M4 Pro MacBook Pro (32GB RAM+) | NVIDIA RTX 3080 10GB / AMD RX 6800 16GB (32GB RAM+) |
| deepseek-r1:32b | 32B | 20 GB | ~22 GB | M2 Max/Ultra Mac Studio | NVIDIA RTX 3090 24GB / AMD RX 7900 XTX 24GB (64GB RAM+) |
| deepseek-r1:70b | 70B | 43 GB | ~45 GB | M2 Ultra Mac Studio | NVIDIA A100 40GB / AMD MI250X 128GB (128GB RAM+) |
| 模型参数规模 | 典型用途 | CPU 建议 | GPU 建议 | 内存建议 (RAM) | 磁盘空间建议 | 适用场景 |
|---|---|---|---|---|---|---|
| deepseek-r1:1.5b(15亿) | 小型推理、轻量级任务 | 4核以上 (Intel i5 / AMD Ryzen 5) | 可选,入门级 GPU (如 NVIDIA GTX 1650, 4GB 显存) | 8GB | 10GB 以上 SSD | 小型 NLP 任务、文本生成、简单分类 |
| deepseek-r1:7b(70亿) | 中等推理、通用任务 | 6核以上 (Intel i7 / AMD Ryzen 7) | 中端 GPU (如 NVIDIA RTX 3060, 12GB 显存) | 16GB | 20GB 以上 SSD | 中等规模 NLP、对话系统、文本分析 |
| deepseek-r1:14b(140亿) | 中大型推理、复杂任务 | 8核以上 (Intel i9 / AMD Ryzen 9) | 高端 GPU (如 NVIDIA RTX 3090, 24GB 显存) | 32GB | 50GB 以上 SSD | 复杂 NLP、多轮对话、知识问答 |
| deepseek-r1:32b(320亿) | 大型推理、高性能任务 | 12核以上 (Intel Xeon / AMD Threadripper) | 高性能 GPU (如 NVIDIA A100, 40GB 显存) | 64GB | 100GB 以上 SSD | 大规模 NLP、多模态任务、研究用途 |
| deepseek-r1:70b(700亿) | 超大规模推理、研究任务 | 16核以上 (服务器级 CPU) | 多 GPU 并行 (如 2x NVIDIA A100, 80GB 显存) | 128GB | 200GB 以上 SSD | 超大规模模型、研究、企业级应用 |
| deepseek-r1:671b(6710亿) | 超大规模训练、企业级任务 | 服务器级 CPU (如 AMD EPYC / Intel Xeon) | 多 GPU 集群 (如 8x NVIDIA A100, 320GB 显存) | 256GB 或更高 | 1TB 以上 NVMe SSD | 超大规模训练、企业级 AI 平台 |
二、本地知识库搭建
① open-webui教程
👉 安装教程
② Dify教程
👉 安装教程
③ anythingllm教程
👉 官网下载地址
④ GPT4ALL教程
👉 安装教程
四、外网映射访问
👉 ngrok官方地址 👉 ngrok注册视频教程 👉 外网访问视频教程
[点击观看视频教程]