博客记录-day085-JUC线程池: FutureTask详解+Redis常见数据类型

63 阅读24分钟

一、Java全栈知识体系-FutureTask详解

1、FutureTask简介

Future 表示了一个任务的生命周期,是一个可取消的异步运算,可以把它看作是一个异步操作的结果的占位符,它将在未来的某个时刻完成,并提供对其结果的访问。

FutureTask 为 Future 提供了基础实现,如获取任务执行结果(get)和取消任务(cancel)等。如果任务尚未完成,获取任务执行结果时将会阻塞。一旦执行结束,任务就不能被重启或取消(除非使用runAndReset执行计算)。FutureTask 常用来封装 Callable 和 Runnable,也可以作为一个任务提交到线程池中执行。除了作为一个独立的类之外,此类也提供了一些功能性函数供我们创建自定义 task 类使用。FutureTask 的线程安全由CAS来保证。

2、FutureTask类关系

可以看到,FutureTask实现了RunnableFuture接口,则RunnableFuture接口继承了Runnable接口和Future接口,所以FutureTask既能当做一个Runnable直接被Thread执行,也能作为Future用来得到Callable的计算结果。

3、FutureTask源码解析

3.1 Callable接口

Callable是个泛型接口,泛型V就是要call()方法返回的类型。对比Runnable接口,Runnable不会返回数据也不能抛出异常。

public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

3.2 Future接口

Future接口代表异步计算的结果,通过Future接口提供的方法可以查看异步计算是否执行完成,或者等待执行结果并获取执行结果,同时还可以取消执行。Future接口的定义如下:

public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}
  • cancel():cancel()方法用来取消异步任务的执行。如果异步任务已经完成或者已经被取消,或者由于某些原因不能取消,则会返回false。如果任务还没有被执行,则会返回true并且异步任务不会被执行。如果任务已经开始执行了但是还没有执行完成,若mayInterruptIfRunning为true,则会立即中断执行任务的线程并返回true,若mayInterruptIfRunning为false,则会返回true且不会中断任务执行线程。
  • isCanceled():判断任务是否被取消,如果任务在结束(正常执行结束或者执行异常结束)前被取消则返回true,否则返回false。
  • isDone():判断任务是否已经完成,如果完成则返回true,否则返回false。需要注意的是:任务执行过程中发生异常、任务被取消也属于任务已完成,也会返回true。
  • get():获取任务执行结果,如果任务还没完成则会阻塞等待直到任务执行完成。如果任务被取消则会抛出CancellationException异常,如果任务执行过程发生异常则会抛出ExecutionException异常,如果阻塞等待过程中被中断则会抛出InterruptedException异常。
  • get(long timeout,Timeunit unit):带超时时间的get()版本,如果阻塞等待过程中超时则会抛出TimeoutException异常。

3.3 核心属性


//内部持有的callable任务,运行完毕后置空
private Callable<V> callable;

//从get()中返回的结果或抛出的异常
private Object outcome; // non-volatile, protected by state reads/writes

//运行callable的线程
private volatile Thread runner;

//使用Treiber栈保存等待线程
private volatile WaitNode waiters;

//任务状态
private volatile int state;
private static final int NEW          = 0;
private static final int COMPLETING   = 1;
private static final int NORMAL       = 2;
private static final int EXCEPTIONAL  = 3;
private static final int CANCELLED    = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED  = 6;

其中需要注意的是state是volatile类型的,也就是说只要有任何一个线程修改了这个变量,那么其他所有的线程都会知道最新的值。7种状态具体表示:

  • NEW:表示是个新的任务或者还没被执行完的任务。这是初始状态。
  • COMPLETING:任务已经执行完成或者执行任务的时候发生异常,但是任务执行结果或者异常原因还没有保存到outcome字段(outcome字段用来保存任务执行结果,如果发生异常,则用来保存异常原因)的时候,状态会从NEW变更到COMPLETING。但是这个状态会时间会比较短,属于中间状态。
  • NORMAL:任务已经执行完成并且任务执行结果已经保存到outcome字段,状态会从COMPLETING转换到NORMAL。这是一个最终态。
  • EXCEPTIONAL:任务执行发生异常并且异常原因已经保存到outcome字段中后,状态会从COMPLETING转换到EXCEPTIONAL。这是一个最终态。
  • CANCELLED:任务还没开始执行或者已经开始执行但是还没有执行完成的时候,用户调用了cancel(false)方法取消任务且不中断任务执行线程,这个时候状态会从NEW转化为CANCELLED状态。这是一个最终态。
  • INTERRUPTING: 任务还没开始执行或者已经执行但是还没有执行完成的时候,用户调用了cancel(true)方法取消任务并且要中断任务执行线程但是还没有中断任务执行线程之前,状态会从NEW转化为INTERRUPTING。这是一个中间状态。
  • INTERRUPTED:调用interrupt()中断任务执行线程之后状态会从INTERRUPTING转换到INTERRUPTED。这是一个最终态。 有一点需要注意的是,所有值大于COMPLETING的状态都表示任务已经执行完成(任务正常执行完成,任务执行异常或者任务被取消)。

各个状态之间的可能转换关系如下图所示:

3.4 构造函数

  • FutureTask(Callable callable)
public FutureTask(Callable<V> callable) {
    if (callable == null)
        throw new NullPointerException();
    this.callable = callable;
    this.state = NEW;       // ensure visibility of callable
}

这个构造函数会把传入的Callable变量保存在this.callable字段中,该字段定义为private Callable<V> callable;用来保存底层的调用,在被执行完成以后会指向null,接着会初始化state字段为NEW。

  • FutureTask(Runnable runnable, V result)
public FutureTask(Runnable runnable, V result) {
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;       // ensure visibility of callable
}

这个构造函数会把传入的Runnable封装成一个Callable对象保存在callable字段中,同时如果任务执行成功的话就会返回传入的result。这种情况下如果不需要返回值的话可以传入一个null。

顺带看下Executors.callable()这个方法,这个方法的功能是把Runnable转换成Callable,代码如下:

public static <T> Callable<T> callable(Runnable task, T result) {
    if (task == null)
       throw new NullPointerException();
    return new RunnableAdapter<T>(task, result);
}

可以看到这里采用的是适配器模式,调用RunnableAdapter<T>(task, result)方法来适配,实现如下:

static final class RunnableAdapter<T> implements Callable<T> {
    final Runnable task;
    final T result;
    RunnableAdapter(Runnable task, T result) {
        this.task = task;
        this.result = result;
    }
    public T call() {
        task.run();
        return result;
    }
}

这个适配器很简单,就是简单的实现了Callable接口,在call()实现中调用Runnable.run()方法,然后把传入的result作为任务的结果返回。

在new了一个FutureTask对象之后,接下来就是在另一个线程中执行这个Task,无论是通过直接new一个Thread还是通过线程池,执行的都是run()方法,接下来就看看run()方法的实现。

3.5 核心方法 - run()

public void run() {
    //新建任务,CAS替换runner为当前线程
    if (state != NEW ||
        !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                     null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                result = c.call();
                ran = true;
            } catch (Throwable ex) {
                result = null;
                ran = false;
                setException(ex);
            }
            if (ran)
                set(result);//设置执行结果
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        int s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);//处理中断逻辑
    }
}

说明:

  • 运行任务,如果任务状态为NEW状态,则利用CAS修改为当前线程。执行完毕调用set(result)方法设置执行结果。set(result)源码如下:
protected void set(V v) {
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        outcome = v;
        UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
        finishCompletion();//执行完毕,唤醒等待线程
    }
}
  • 首先利用cas修改state状态为COMPLETING,设置返回结果,然后使用 lazySet(UNSAFE.putOrderedInt)的方式设置state状态为NORMAL。结果设置完毕后,调用finishCompletion()方法唤醒等待线程,源码如下:
private void finishCompletion() {
    // assert state > COMPLETING;
    for (WaitNode q; (q = waiters) != null;) {
        if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {//移除等待线程
            for (;;) {//自旋遍历等待线程
                Thread t = q.thread;
                if (t != null) {
                    q.thread = null;
                    LockSupport.unpark(t);//唤醒等待线程
                }
                WaitNode next = q.next;
                if (next == null)
                    break;
                q.next = null; // unlink to help gc
                q = next;
            }
            break;
        }
    }
    //任务完成后调用函数,自定义扩展
    done();

    callable = null;        // to reduce footprint
}
  • 回到run方法,如果在 run 期间被中断,此时需要调用handlePossibleCancellationInterrupt方法来处理中断逻辑,确保任何中断(例如cancel(true))只停留在当前run或runAndReset的任务中,源码如下:
private void handlePossibleCancellationInterrupt(int s) {
    //在中断者中断线程之前可能会延迟,所以我们只需要让出CPU时间片自旋等待
    if (s == INTERRUPTING)
        while (state == INTERRUPTING)
            Thread.yield(); // wait out pending interrupt
}

3.6 核心方法 - get()

//获取执行结果
public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    return report(s);
}

说明:FutureTask 通过get()方法获取任务执行结果。如果任务处于未完成的状态(state <= COMPLETING),就调用awaitDone方法(后面单独讲解)等待任务完成。任务完成后,通过report方法获取执行结果或抛出执行期间的异常。report源码如下:

//返回执行结果或抛出异常
private V report(int s) throws ExecutionException {
    Object x = outcome;
    if (s == NORMAL)
        return (V)x;
    if (s >= CANCELLED)
        throw new CancellationException();
    throw new ExecutionException((Throwable)x);
}

3.7 核心方法 - awaitDone(boolean timed, long nanos)

private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    final long deadline = timed ? System.nanoTime() + nanos : 0L;
    WaitNode q = null;
    boolean queued = false;
    for (;;) {//自旋
        if (Thread.interrupted()) {//获取并清除中断状态
            removeWaiter(q);//移除等待WaitNode
            throw new InterruptedException();
        }

        int s = state;
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;//置空等待节点的线程
            return s;
        }
        else if (s == COMPLETING) // cannot time out yet
            Thread.yield();
        else if (q == null)
            q = new WaitNode();
        else if (!queued)
            //CAS修改waiter
            queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                 q.next = waiters, q);
        else if (timed) {
            nanos = deadline - System.nanoTime();
            if (nanos <= 0L) {
                removeWaiter(q);//超时,移除等待节点
                return state;
            }
            LockSupport.parkNanos(this, nanos);//阻塞当前线程
        }
        else
            LockSupport.park(this);//阻塞当前线程
    }
}

说明:awaitDone用于等待任务完成,或任务因为中断或超时而终止。返回任务的完成状态。函数执行逻辑如下:

如果线程被中断,首先清除中断状态,调用removeWaiter移除等待节点,然后抛出InterruptedException。removeWaiter源码如下:

private void removeWaiter(WaitNode node) {
    if (node != null) {
        node.thread = null;//首先置空线程
        retry:
        for (;;) {          // restart on removeWaiter race
            //依次遍历查找
            for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                s = q.next;
                if (q.thread != null)
                    pred = q;
                else if (pred != null) {
                    pred.next = s;
                    if (pred.thread == null) // check for race
                        continue retry;
                }
                else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,q, s)) //cas替换
                    continue retry;
            }
            break;
        }
    }
}
  • 如果当前状态为结束状态(state>COMPLETING),则根据需要置空等待节点的线程,并返回 Future 状态;
  • 如果当前状态为正在完成(COMPLETING),说明此时 Future 还不能做出超时动作,为任务让出CPU执行时间片;
  • 如果state为NEW,先新建一个WaitNode,然后CAS修改当前waiters;
  • 如果等待超时,则调用removeWaiter移除等待节点,返回任务状态;如果设置了超时时间但是尚未超时,则park阻塞当前线程;
  • 其他情况直接阻塞当前线程。

3.8 核心方法 - cancel(boolean mayInterruptIfRunning)

public boolean cancel(boolean mayInterruptIfRunning) {
    //如果当前Future状态为NEW,根据参数修改Future状态为INTERRUPTING或CANCELLED
    if (!(state == NEW &&
          UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
              mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
        return false;
    try {    // in case call to interrupt throws exception
        if (mayInterruptIfRunning) {//可以在运行时中断
            try {
                Thread t = runner;
                if (t != null)
                    t.interrupt();
            } finally { // final state
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
            }
        }
    } finally {
        finishCompletion();//移除并唤醒所有等待线程
    }
    return true;
}

说明:尝试取消任务。如果任务已经完成或已经被取消,此操作会失败

  • 如果当前Future状态为NEW,根据参数修改Future状态为INTERRUPTING或CANCELLED。
  • 如果当前状态不为NEW,则根据参数mayInterruptIfRunning决定是否在任务运行中也可以中断。中断操作完成后,调用finishCompletion移除并唤醒所有等待线程。

4、FutureTask示例

常用使用方式:

  • 第一种方式: Future + ExecutorService
  • 第二种方式: FutureTask + ExecutorService
  • 第三种方式: FutureTask + Thread

4.1 Future使用示例

public class FutureDemo {
      public static void main(String[] args) {
          ExecutorService executorService = Executors.newCachedThreadPool();
          Future future = executorService.submit(new Callable<Object>() {
              @Override
              public Object call() throws Exception {
                  Long start = System.currentTimeMillis();
                  while (true) {
                      Long current = System.currentTimeMillis();
                     if ((current - start) > 1000) {
                         return 1;
                     }
                 }
             }
         });
  
         try {
             Integer result = (Integer)future.get();
             System.out.println(result);
         }catch (Exception e){
             e.printStackTrace();
         }
     }
}

二、小林-Redis常见数据类型

1、String

1.1 介绍

String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value其实不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M

1.2 内部实现

String 类型的底层的数据结构实现主要是 int 和 SDS(简单动态字符串)。

SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:

  • SDS 不仅可以保存文本数据,还可以保存二进制数据。因为 SDS 使用 len 属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在 buf[] 数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。
  • SDS 获取字符串长度的时间复杂度是 O(1) 。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)
  • Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。

字符串对象的内部编码(encoding)有 3 种 :int、raw和 embstr

如果一个字符串对象保存的是整数值,并且这个整数值可以用long类型来表示,那么字符串对象会将整数值保存在字符串对象结构的ptr属性里面(将void*转换成 long),并将字符串对象的编码设置为int

如果字符串对象保存的是一个字符串,并且这个字符申的长度小于等于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为embstr, embstr编码是专门用于保存短字符串的一种优化编码方式:

如果字符串对象保存的是一个字符串,并且这个字符串的长度大于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为raw

注意,embstr 编码和 raw 编码的边界在 redis 不同版本中是不一样的:

  • redis 2.+ 是 32 字节
  • redis 3.0-4.0 是 39 字节
  • redis 5.0 是 44 字节

可以看到embstrraw编码都会使用SDS来保存值,但不同之处在于embstr会通过一次内存分配函数来分配一块连续的内存空间来保存redisObjectSDS,而raw编码会通过调用两次内存分配函数来分别分配两块空间来保存redisObjectSDS。Redis这样做会有很多好处:

  • embstr编码将创建字符串对象所需的内存分配次数从 raw 编码的两次降低为一次;
  • 释放 embstr编码的字符串对象同样只需要调用一次内存释放函数;
  • 因为embstr编码的字符串对象的所有数据都保存在一块连续的内存里面可以更好的利用 CPU 缓存提升性能。

但是 embstr 也有缺点的:

  • 如果字符串的长度增加需要重新分配内存时,整个redisObject和sds都需要重新分配空间,所以embstr编码的字符串对象实际上是只读的,redis没有为embstr编码的字符串对象编写任何相应的修改程序。当我们对embstr编码的字符串对象执行任何修改命令(例如append)时,程序会先将对象的编码从embstr转换成raw,然后再执行修改命令。

1.3 常用指令

普通字符串的基本操作:

# 设置 key-value 类型的值
> SET name lin
OK
# 根据 key 获得对应的 value
> GET name
"lin"
# 判断某个 key 是否存在
> EXISTS name
(integer) 1
# 返回 key 所储存的字符串值的长度
> STRLEN name
(integer) 3
# 删除某个 key 对应的值
> DEL name
(integer) 1

批量设置 :

# 批量设置 key-value 类型的值
> MSET key1 value1 key2 value2 
OK
# 批量获取多个 key 对应的 value
> MGET key1 key2 
1) "value1"
2) "value2"

计数器(字符串的内容为整数的时候可以使用):

# 设置 key-value 类型的值
> SET number 0
OK
# 将 key 中储存的数字值增一
> INCR number
(integer) 1
# 将key中存储的数字值加 10
> INCRBY number 10
(integer) 11
# 将 key 中储存的数字值减一
> DECR number
(integer) 10
# 将key中存储的数字值键 10
> DECRBY number 10
(integer) 0

过期(默认为永不过期):

# 设置 key 在 60 秒后过期(该方法是针对已经存在的key设置过期时间)
> EXPIRE name  60 
(integer) 1
# 查看数据还有多久过期
> TTL name 
(integer) 51

#设置 key-value 类型的值,并设置该key的过期时间为 60 秒
> SET key  value EX 60
OK
> SETEX key  60 value
OK

不存在就插入:

# 不存在就插入(not exists)
>SETNX key value
(integer) 1

1.4 应用场景

1.4.1 缓存对象

使用 String 来缓存对象有两种方式:

  • 直接缓存整个对象的 JSON,命令例子: SET user:1 '{"name":"xiaolin", "age":18}'
  • 采用将 key 进行分离为 user:ID:属性,采用 MSET 存储,用 MGET 获取各属性值,命令例子: MSET user:1:name xiaolin user:1:age 18 user:2:name xiaomei user:2:age 20
1.4.2 常规计数

因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。因此 String 数据类型适合计数场景,比如计算访问次数、点赞、转发、库存数量等等。

比如计算文章的阅读量:

# 初始化文章的阅读量
> SET aritcle:readcount:1001 0
OK
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 1
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 2
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 3
# 获取对应文章的阅读量
> GET aritcle:readcount:1001
"3"
1.4.3 分布式锁

SET 命令有个 NX 参数可以实现「key不存在才插入」,可以用它来实现分布式锁:

  • 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
  • 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。

一般而言,还会对分布式锁加上过期时间,分布式锁的命令如下:

SET lock_key unique_value NX PX 10000
  • lock_key 就是 key 键;
  • unique_value 是客户端生成的唯一的标识;
  • NX 代表只在 lock_key 不存在时,才对 lock_key 进行设置操作;
  • PX 10000 表示设置 lock_key 的过期时间为 10s,这是为了避免客户端发生异常而无法释放锁。

而解锁的过程就是将 lock_key 键删除,但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。

可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。

// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁

1.4.4 共享 Session 信息

通常我们在开发后台管理系统时,会使用 Session 来保存用户的会话(登录)状态,这些 Session 信息会被保存在服务器端,但这只适用于单系统应用,如果是分布式系统此模式将不再适用。

例如用户一的 Session 信息被存储在服务器一,但第二次访问时用户一被分配到服务器二,这个时候服务器并没有用户一的 Session 信息,就会出现需要重复登录的问题,问题在于分布式系统每次会把请求随机分配到不同的服务器。

分布式系统单独存储 Session 流程图:

因此,我们需要借助 Redis 对这些 Session 信息进行统一的存储和管理,这样无论请求发送到那台服务器,服务器都会去同一个 Redis 获取相关的 Session 信息,这样就解决了分布式系统下 Session 存储的问题。

分布式系统使用同一个 Redis 存储 Session 流程图:

2、List

2.1 介绍

List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。

列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素。

2.2 内部实现

List 类型的底层数据结构是由双向链表或压缩列表实现的:

  • 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;
  • 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;

但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表

2.3 常用命令

# 将一个或多个值value插入到key列表的表头(最左边),最后的值在最前面
LPUSH key value [value ...] 
# 将一个或多个值value插入到key列表的表尾(最右边)
RPUSH key value [value ...]
# 移除并返回key列表的头元素
LPOP key     
# 移除并返回key列表的尾元素
RPOP key 

# 返回列表key中指定区间内的元素,区间以偏移量start和stop指定,从0开始
LRANGE key start stop

# 从key列表表头弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BLPOP key [key ...] timeout
# 从key列表表尾弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BRPOP key [key ...] timeout

2.4 应用场景

2.4.1 消息队列

消息队列在存取消息时,必须要满足三个需求,分别是消息保序、处理重复的消息和保证消息可靠性

Redis 的 List 和 Stream 两种数据类型,就可以满足消息队列的这三个需求。我们先来了解下基于 List 的消息队列实现方法,后面在介绍 Stream 数据类型时候,在详细说说 Stream。

1、如何满足消息保序需求?

List 本身就是按先进先出的顺序对数据进行存取的,所以,如果使用 List 作为消息队列保存消息的话,就已经能满足消息保序的需求了。

List 可以使用 LPUSH + RPOP (或者反过来,RPUSH+LPOP)命令实现消息队列。

  • 生产者使用 LPUSH key value[value...] 将消息插入到队列的头部,如果 key 不存在则会创建一个空的队列再插入消息。
  • 消费者使用 RPOP key 依次读取队列的消息,先进先出。

不过,在消费者读取数据时,有一个潜在的性能风险点。

在生产者往 List 中写入数据时,List 并不会主动地通知消费者有新消息写入,如果消费者想要及时处理消息,就需要在程序中不停地调用 RPOP 命令(比如使用一个while(1)循环)。如果有新消息写入,RPOP命令就会返回结果,否则,RPOP命令返回空值,再继续循环。

所以,即使没有新消息写入List,消费者也要不停地调用 RPOP 命令,这就会导致消费者程序的 CPU 一直消耗在执行 RPOP 命令上,带来不必要的性能损失。

为了解决这个问题,Redis提供了 BRPOP 命令。BRPOP命令也称为阻塞式读取,客户端在没有读到队列数据时,自动阻塞,直到有新的数据写入队列,再开始读取新数据。和消费者程序自己不停地调用RPOP命令相比,这种方式能节省CPU开销。

2、如何处理重复的消息?

消费者要实现重复消息的判断,需要 2 个方面的要求:

  • 每个消息都有一个全局的 ID
  • 消费者要记录已经处理过的消息的 ID。当收到一条消息后,消费者程序就可以对比收到的消息 ID 和记录的已处理过的消息 ID,来判断当前收到的消息有没有经过处理。如果已经处理过,那么,消费者程序就不再进行处理了。

但是 List 并不会为每个消息生成 ID 号,所以我们需要自行为每个消息生成一个全局唯一ID,生成之后,我们在用 LPUSH 命令把消息插入 List 时,需要在消息中包含这个全局唯一 ID。

例如,我们执行以下命令,就把一条全局 ID 为 111000102、库存量为 99 的消息插入了消息队列:

> LPUSH mq "111000102:stock:99"
(integer) 1

3、如何保证消息可靠性?

当消费者程序从 List 中读取一条消息后,List 就不会再留存这条消息了。所以,如果消费者程序在处理消息的过程出现了故障或宕机,就会导致消息没有处理完成,那么,消费者程序再次启动后,就没法再次从 List 中读取消息了。

为了留存消息,List 类型提供了 BRPOPLPUSH 命令,这个命令的作用是让消费者程序从一个 List 中读取消息,同时,Redis 会把这个消息再插入到另一个 List(可以叫作备份 List)留存

这样一来,如果消费者程序读了消息但没能正常处理,等它重启后,就可以从备份 List 中重新读取消息并进行处理了。

好了,到这里可以知道基于 List 类型的消息队列,满足消息队列的三大需求(消息保序、处理重复的消息和保证消息可靠性)

  • 消息保序:使用 LPUSH + RPOP;
  • 阻塞读取:使用 BRPOP;
  • 重复消息处理:生产者自行实现全局唯一 ID;
  • 消息的可靠性:使用 BRPOPLPUSH

List 作为消息队列有什么缺陷?

List 不支持多个消费者消费同一条消息,因为一旦消费者拉取一条消息后,这条消息就从 List 中删除了,无法被其它消费者再次消费。

要实现一条消息可以被多个消费者消费,那么就要将多个消费者组成一个消费组,使得多个消费者可以消费同一条消息,但是 List 类型并不支持消费组的实现

这就要说起 Redis 从 5.0 版本开始提供的 Stream 数据类型了,Stream 同样能够满足消息队列的三大需求,而且它还支持「消费组」形式的消息读取。