Redis主从
Redis 具有高可靠性,是什么意思呢?其实,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上。即使有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。
Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。
- 读操作:主库、从库都可以接收;
- 写操作:首先到主库执行,然后,主库将写操作同步给从库。
主从库间如何进行第一次同步?
当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前 使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。
- 第一个阶段,主从库建立连接(涵盖握手、鉴权),协商同步。在这一步,从库和主库建立连接,并告诉主库进行同步,主库回复后,就开始同步了。
具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。
- runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”。
- offset: 此时为-1,表示第一次复制。
主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。
这里有个地方需要注意,FULLRESYNC 响应表示第一次复制采用的全量复制。
- 第二个阶段,主库将把所有数据复制给从库,从库收到数据后,先清空本地数据库,然后在本地完成数据加载。这个过程依赖于主库生成的内存快照RDB文件。
在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录RDB 文件生成后收到的所有写操作。
- 第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。
主从级联模式分担全量复制时的主库压力
通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。
如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢? 其实是有的,这就是“主 - 从 - 从”模式。
一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。
主从库间网络断了或者网络阻塞了怎么办?
网络断了之后,主从库会采用增量复制的方式继续同步。听名字大概就可以猜到它和全量复制的不同:全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。
那么,增量复制时,主从库之间具体是怎么保持同步的呢?这里的奥妙就在于repl_backlog_buffer 这个缓冲区。
当从库断开连接后,主库会把这个期间的命令写入repl_buffer还有repl_backlog_buffer这个环形缓冲区中。
repl_backlog_buffer是一个环形缓冲区,主库会记录自己写到的位置,从库会记录自己已经读到的位置。
刚开始的时候,两者的起始位置是相同的,随着主库的写操作增加,它在环形缓冲区的偏移量也会增加。同样的,从库在复制完写操作命令后,它在环形缓冲区中的读位置也会增加。正常情况下,两者的偏移量是相等。
主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和slave_repl_offset之间的差距。
在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset 会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset之间的命令操作同步给从库就行。
因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。
为了避免这个情况,需要调整repl_backlog_size这个参数。这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。
举个例子,如果主库每秒写入 2000 个操作,每个操作的大小为 2KB,网络每秒能传输1000 个操作,那么,有 1000 个操作需要缓冲起来,这就至少需要 2MB 的缓冲空间。否则,新写的命令就会覆盖掉旧操作了。为了应对可能的突发压力,我们最终把repl_backlog_size 设为 4MB。
这样一来,增量复制时主从库的数据不一致风险就降低了。不过,如果并发请求量非常大,连两倍的缓冲空间都存不下新操作请求的话,此时,主从库数据仍然可能不一致。
针对这种情况,一方面,你可以根据 Redis 所在服务器的内存资源再适当增加repl_backlog_size 值,比如说设置成缓冲空间大小的 4 倍,另一方面,你可以考虑使用切片集群来分担单个主库的请求压力。
问题:replication buffer 和 repl_backlog_buffer 的区别
总的来说,replication buffer 是主从库在进行全量复制时,主库上用于和从库连接的客户端的 buffer,而 repl_backlog_buffer 是为了支持从库增量复制,主库上用于持续保存写操作的一块专用 buffer。