书生大模型实战营 | L1G5000 XTuner 微调个人小助手认知

159 阅读7分钟

基础任务

  • 使用 XTuner 微调 InternLM2-Chat-7B 实现自己的小助手认知,如下图所示(图中的尖米需替换成自己的昵称),记录复现过程并截图。

image.png

参考文档:github.com/InternLM/Tu…

过程记录

微调内容需要使用 30% A100 才能完成。 本次实战营的微调内容包括了以下两个部分:

  1. SFT 数据的获取
  2. 使用 InternLM2.5-7B-Chat 模型微调

环境配置与数据准备

步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境

cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

image.png

步骤 1. 安装 XTuner

此处推荐用我 freeze 的 requirements.txt,更多的安装方法请回到前面看 XTuner 文档

cd /root/Tutorial/docs/L1/XTuner
pip install -r requirements.txt
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121

验证安装

为了验证 XTuner 是否安装正确,我们将使用命令打印配置文件。

打印配置文件: 在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。

xtuner list-cfg

输出结果:

image.png

修改提供的数据

步骤 0.  创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

目录结构

image.png

步骤 1.  创建修改脚本

我们写一个脚本生成修改我们需要的微调训练数据,在当前目录下创建一个 change_script.py 文件,内容如下:

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py

打开该change_script.py文件后将下面的内容复制进去。

import json
import argparse
from tqdm import tqdm

def process_line(line, old_text, new_text):
    # 解析 JSON 行
    data = json.loads(line)
    
    # 递归函数来处理嵌套的字典和列表
    def replace_text(obj):
        if isinstance(obj, dict):
            return {k: replace_text(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [replace_text(item) for item in obj]
        elif isinstance(obj, str):
            return obj.replace(old_text, new_text)
        else:
            return obj
    
    # 处理整个 JSON 对象
    processed_data = replace_text(data)
    
    # 将处理后的对象转回 JSON 字符串
    return json.dumps(processed_data, ensure_ascii=False)

def main(input_file, output_file, old_text, new_text):
    with open(input_file, 'r', encoding='utf-8') as infile, \
         open(output_file, 'w', encoding='utf-8') as outfile:
        
        # 计算总行数用于进度条
        total_lines = sum(1 for _ in infile)
        infile.seek(0)  # 重置文件指针到开头
        
        # 使用 tqdm 创建进度条
        for line in tqdm(infile, total=total_lines, desc="Processing"):
            processed_line = process_line(line.strip(), old_text, new_text)
            outfile.write(processed_line + '\n')

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
    parser.add_argument("input_file", help="Input JSONL file to process")
    parser.add_argument("output_file", help="Output file for processed JSONL")
    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
    parser.add_argument("--new_text", default="闻星", help="Text to replace with")
    args = parser.parse_args()

    main(args.input_file, args.output_file, args.old_text, args.new_text)

然后修改如下: 打开 change_script.py ,修改 --new_text 中 default="闻星" 为你的名字

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")

    parser.add_argument("input_file", help="Input JSONL file to process")

    parser.add_argument("output_file", help="Output file for processed JSONL")

    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
-	parser.add_argument("--new_text", default="闻星", help="Text to replace with")
+   parser.add_argument("--new_text", default="你的名字", help="Text to replace with")

    args = parser.parse_args()

image.png

步骤 2.  执行脚本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

image.png

步骤 3.  查看数据

cat assistant_Tuner_change.jsonl | head -n 3

image.png

训练启动

步骤 0. 复制模型

在InternStudio开发机中的已经提供了微调模型,可以直接软链接即可。

本模型位于/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat

mkdir /root/finetune/models

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

步骤 1. 修改 Config

获取官方写好的 config

# cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./

image.png Copy to ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py

image.png

步骤 2. 启动微调

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_5_chat_7b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。--deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。

运行命令进行微调

cd /root/finetune
conda activate xtuner-env

xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

image.png

image.png

image.png

image.png

步骤 3. 权重转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

我们可以使用 xtuner convert pth_to_hf 命令来进行模型格式转换。

xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:CONFIG 表示微调的配置文件, PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重, SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。

除此之外,我们其实还可以在转换的命令中添加几个额外的参数,包括:

参数名解释
--fp32代表以fp32的精度开启,假如不输入则默认为fp16
--max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
cd /root/finetune/work_dirs/assistTuner

conda activate xtuner-env

# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1 | sed 's/:$//'`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

image.png 目录结构

image.png

步骤 4. 模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

在模型合并这一步还有其他很多的可选参数,包括:

参数名解释
--max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
--device {device_name}这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
--is-clip这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加
cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

image.png 目录结构

image.png

模型 WebUI 对话

微调完成后,我们可以再次运行 xtuner_streamlit_demo.py 脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

cd ~/Tutorial/tools/L1_XTuner_code

修改脚本文件

# 直接修改脚本文件第18行
- model_name_or_path = "Shanghai_AI_Laboratory/internlm2_5-7b-chat"
+ model_name_or_path = "/root/finetune/work_dirs/assistTuner/merged"

image.png

然后,我们可以直接启动应用。

conda activate xtuner-env

pip install streamlit==1.31.0
streamlit run /root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py

image.png 运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射。

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p *****
ssh -p xxxx root@ssh.intern-ai.org.cn -CNg -L 8501:127.0.0.1:8501 -o StrictHostKeyChecking=no

最后,通过浏览器访问:http://127.0.0.1:8501 来进行对话了。

image.png image.png