什么是rebalance?
Rebalance 本质上是一种协议,规定了一个 Consumer Group 下的所有 Consumer 如何达成一致,来分配订阅 Topic 的每个分区。
假设某个组下有 20 个 consumer 实例,该组订阅了一个有着 100 个分区的 topic 。 正常情况下, Kafka 会为每个 consumer 平均分配 5 个分区。这个分配过程就被称为 rebalance 。 当 consumer 成功地执行 rebalance 后,组订阅 topic 的每个分区只会分配给组内的一个 consumer 实例。
Kafka 内置的一个全新的组协调协议(group coordination protocol) 。对于每个组而言, Kafka 的某个 broker 会被选举为组协调者(group coordinator)。coordinator 负责对组的状态进行管理,它的主要职责就是当新成员到达时促成组内所有成员达成新的分区分配方案,即 coordinator 负责对组执行 rebalance 操作。
触发 Rebalance 的时机
1)组成员数发生变更。比如有新的 Consumer 实例加入组或者离开组,抑或是有 Consumer 实例崩溃被“踢出”组。99% 都是这个原因
2)订阅主题数发生变更。主要基于正则表达式的订阅,当匹配正则表达式的新 topic 被创建时则会触发 rebalance。
3)订阅主题的分区数发生变更。
Rebalance 发生时,Group 下所有 consumer 实例都会协调在一起共同参与,kafka 能够保证尽量达到最公平的分配。但是 Rebalance 过程对 consumer group 会造成比较严重的影响。在 Rebalance 的过程中 consumer group 下的所有消费者实例都会停止工作,等待 Rebalance 过程完成。
Rebalance 过程分析
Rebalance 过程分为两步:Join 和 Sync。
- Join 顾名思义就是加入组。这一步中,所有成员都向coordinator发送JoinGroup请求,请求加入消费组。一旦所有成员都发送了JoinGroup请求,coordinator会从中选择一个consumer担任leader的角色,并把组成员信息以及订阅信息发给leader——注意leader和coordinator不是一个概念。leader负责消费分配方案的制定。
- Sync,这一步leader开始分配消费方案,即哪个consumer负责消费哪些topic的哪些partition。一旦完成分配,leader会将这个方案封装进SyncGroup请求中发给coordinator,非leader也会发SyncGroup请求,只是内容为空。coordinator接收到分配方案之后会把方案塞进SyncGroup的response中发给各个consumer。这样组内的所有成员就都知道自己应该消费哪些分区了。
rebalance的弊端
1)Rebalance 影响 Consumer 端 TPS。(因为rebalance过程中,kafka会停止消费)
2)Rebalance 要完成需要比较久的时间。
3)Rebalance 效率不高,每次都要全部consumer参加。
Rebalance 场景分析
新成员加入组
组成员“崩溃”
组成员崩溃和组成员主动离开是两个不同的场景。 因为在崩溃时成员并不会主动地告知coordinator此事,coordinator有可能需要一个完整的session.timeout周期(心跳周期)才能检测到这种崩溃,这必然会造成consumer的滞后。可以说离开组是主动地发起rebalance;而崩溃则是被动地发起rebalance。
组成员主动离开组
提交位移
如何避免不必要的rebalance
消费者成员正常的添加和停掉导致rebalance,这种情况无法避免,但是时在某些情况下,Consumer 实例会被 Coordinator 错误地认为 “已停止” 从而被“踢出”Group。从而导致rebalance。
当 Consumer Group 完成 Rebalance 之后,每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求,表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求,Coordinator 就会认为该 Consumer 已经 “死” 了,从而将其从 Group 中移除,然后开启新一轮 Rebalance。这个时间可以通过Consumer 端的参数 session.timeout.ms进行配置。默认值是 10 秒。
Consumer 还提供了一个控制发送心跳请求频率的参数,就是 heartbeat.interval.ms。这个值设置得越小,Consumer 实例发送心跳请求的频率就越高。频繁地发送心跳请求会额外消耗带宽资源。
除了以上两个参数,Consumer 端还有一个参数,用于控制 Consumer 实际消费能力对 Rebalance 的影响,即 max.poll.interval.ms 参数。它限定了 Consumer 端应用程序两次调用 poll 方法的最大时间间隔。它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起 “离开组” 的请求,Coordinator 也会开启新一轮 Rebalance。'
第一类:
- 设置 session.timeout.ms = 6s。
- 设置 heartbeat.interval.ms = 2s。
- 要保证 Consumer 实例在被判定为 “dead” 之前,能够发送至少 3 轮的心跳请求,即 session.timeout.ms >= 3 * heartbeat.interval.ms。
- 第二类非必要 Rebalance 是 Consumer 消费时间过长导致的。此时,max.poll.interval.ms 参数值的设置显得尤为关键。如果要避免非预期的 Rebalance,你最好将该参数值设置得大一点,比你的下游最大处理时间稍长一点。
总之,要为业务处理逻辑留下充足的时间。这样,Consumer 就不会因为处理这些消息的时间太长而引发 Rebalance 。 如果这些都设置好,还是出现rebalance,可以排查一下Consumer 端的 GC 表现,比如是否出现了频繁的 Full GC 导致的长时间停顿,从而引发了 Rebalance。