day35 动态规划03

113 阅读2分钟

0-1背包

文章讲解

思路:

 0-1背包 dp[i][j]表示前i个物品,容量为j时能获取的最大价值(i1开始),当前重量是w[i-1]
n, bagweight = list(map(int, input().split()))
weights = list(map(int, input().split()))
values = list(map(int, input().split()))

#dp = [[0] * (bagweight+1)] * (n+1) # 这种初始化方式会导致所有的行引用同一个列表对象
dp = [[0] * (bagweight + 1) for _ in range(n + 1)]

for i in range(1, n+1):
    for j in range(1, bagweight+1):
        if j < weights[i-1]:
            dp[i][j] = dp[i-1][j]
        else:
            dp[i][j] = max(dp[i-1][j],
                           dp[i-1][j-weights[i-1]] + values[i-1])

print(dp[n][bagweight])

思路2:滚动数组

n, bagweight = list(map(int, input().split()))
weights = list(map(int, input().split()))
values = list(map(int, input().split()))

# 只用一维数组,dp[j]表示容量为j时能获取的最大价值
dp = [0] * (bagweight + 1)

# 遍历物品
for i in range(n):
    # 必须从后向前遍历,这样才能保证每个物品只被使用一次
    # 如果从前向后遍历,会导致物品被重复使用 (包含容量j=weights[i]的情况,所以取weights[i]-1结束)
    for j in range(bagweight, weights[i]-1, -1):
        dp[j] = max(dp[j], dp[j-weights[i]] + values[i])

print(dp[bagweight])

416. 分割等和子集

文章讲解

思路:

先求和,然后转为0-1背包问题。背包容量为sum//2,给定n个物品,是否能够装满背包。刚好子集能凑满一半的数,那么另一半自然存在。

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        total = sum(nums)
        if total %2 != 0:
            return False
        target = total//2
        n = len(nums)
        # dp[i][j]表示容量为j时候,前i个元素是否存在子集能装满(包含空集)
        dp = [[False]*(target+1) for _ in range(n+1)]
        
        # 初始化,背包容量为0时候 空集可以装满
        for i in range(n+1):
            dp[i][0] = True

        for i in range(1, n+1):
            for j in range(1, target+1):
                if j < nums[i-1]:
                    dp[i][j] = dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j] or dp[i-1][j - nums[i-1]]
        return dp[n][target]

滚动数组:

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        total = sum(nums)
        if total %2 != 0:
            return False
        target = total//2
        n = len(nums)
        # dp[i][j]表示容量为j时候,前i个元素是否存在子集能装满(包含空集)
        dp = [False]*(target+1) 
        
        # 初始化,背包容量为0时候 空集可以装满
        dp[0] = True

        for i in range(n):
            for j in range(target, nums[i] -1 , -1):
                dp[j] = dp[j] or dp[j - nums[i]]

        return dp[target]