0-1背包
思路:
0-1背包 dp[i][j]表示前i个物品,容量为j时能获取的最大价值(i从1开始),当前重量是w[i-1] 。
n, bagweight = list(map(int, input().split()))
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#dp = [[0] * (bagweight+1)] * (n+1) # 这种初始化方式会导致所有的行引用同一个列表对象
dp = [[0] * (bagweight + 1) for _ in range(n + 1)]
for i in range(1, n+1):
for j in range(1, bagweight+1):
if j < weights[i-1]:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = max(dp[i-1][j],
dp[i-1][j-weights[i-1]] + values[i-1])
print(dp[n][bagweight])
思路2:滚动数组
n, bagweight = list(map(int, input().split()))
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
# 只用一维数组,dp[j]表示容量为j时能获取的最大价值
dp = [0] * (bagweight + 1)
# 遍历物品
for i in range(n):
# 必须从后向前遍历,这样才能保证每个物品只被使用一次
# 如果从前向后遍历,会导致物品被重复使用 (包含容量j=weights[i]的情况,所以取weights[i]-1结束)
for j in range(bagweight, weights[i]-1, -1):
dp[j] = max(dp[j], dp[j-weights[i]] + values[i])
print(dp[bagweight])
416. 分割等和子集
思路:
先求和,然后转为0-1背包问题。背包容量为sum//2,给定n个物品,是否能够装满背包。刚好子集能凑满一半的数,那么另一半自然存在。
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total = sum(nums)
if total %2 != 0:
return False
target = total//2
n = len(nums)
# dp[i][j]表示容量为j时候,前i个元素是否存在子集能装满(包含空集)
dp = [[False]*(target+1) for _ in range(n+1)]
# 初始化,背包容量为0时候 空集可以装满
for i in range(n+1):
dp[i][0] = True
for i in range(1, n+1):
for j in range(1, target+1):
if j < nums[i-1]:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = dp[i-1][j] or dp[i-1][j - nums[i-1]]
return dp[n][target]
滚动数组:
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total = sum(nums)
if total %2 != 0:
return False
target = total//2
n = len(nums)
# dp[i][j]表示容量为j时候,前i个元素是否存在子集能装满(包含空集)
dp = [False]*(target+1)
# 初始化,背包容量为0时候 空集可以装满
dp[0] = True
for i in range(n):
for j in range(target, nums[i] -1 , -1):
dp[j] = dp[j] or dp[j - nums[i]]
return dp[target]