引言
在现代应用程序中,图数据库的使用越来越普遍,它们提供了一种自然的方式来表达和查询复杂的关系数据。然而,当我们利用用户输入生成图数据库查询时,往往需要解决一个重要挑战:如何正确地将用户输入值映射到数据库中的图节点。本文将介绍一种高效的策略,以确保图数据库查询生成更加准确。
主要内容
1. 设置环境
首先,我们需要安装相关的Python包,并设置环境变量。我们使用OpenAI的模型进行自然语言处理,并连接到Neo4j数据库。
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
# 设置API密钥
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
2. 初始化Neo4j数据库
接下来,我们将连接到Neo4j数据库,并加载关于电影和演员的示例数据。
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
3. 检测用户输入中的实体
为了从用户输入中提取实体信息,我们可以使用LangChain的聊天提示模板。
from typing import List, Optional
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
class Entities(BaseModel):
names: List[str] = Field(
...,
description="All the person or movies appearing in the text",
)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are extracting person and movies from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
]
)
entity_chain = prompt | llm.with_structured_output(Entities)
entities = entity_chain.invoke({"question": "Who played in Casino movie?"})
4. 将实体映射到数据库
利用简单的CONTAINS子句,我们将提取到的实体映射到数据库。
match_query = """MATCH (p:Person|Movie)
WHERE p.name CONTAINS $value OR p.title CONTAINS $value
RETURN coalesce(p.name, p.title) AS result, labels(p)[0] AS type
LIMIT 1
"""
def map_to_database(entities: Entities) -> Optional[str]:
result = ""
for entity in entities.names:
response = graph.query(match_query, {"value": entity})
try:
result += f"{entity} maps to {response[0]['result']} {response[0]['type']} in database\n"
except IndexError:
pass
return result
map_to_database(entities)
5. 定制Cypher查询生成链
通过LangChain的表达式语言编写自定义Cypher提示,以生成Cypher查询。
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
{schema}
Entities in the question map to the following database values:
{entities_list}
Question: {question}
Cypher query:"""
cypher_prompt = ChatPromptTemplate.from_messages(
[
("system", "Given an input question, convert it to a Cypher query. No pre-amble."),
("human", cypher_template),
]
)
cypher_response = (
RunnablePassthrough.assign(names=entity_chain)
| RunnablePassthrough.assign(
entities_list=lambda x: map_to_database(x["names"]),
schema=lambda _: graph.get_schema,
)
| cypher_prompt
| llm.bind(stop=["\nCypherResult:"])
| StrOutputParser()
)
cypher = cypher_response.invoke({"question": "Who played in Casino movie?"})
6. 根据数据库结果生成答案
生成的Cypher语句在数据库中执行后,我们向模型发送结果以生成自然语言答案。
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
corrector_schema = [
Schema(el["start"], el["type"], el["end"])
for el in graph.structured_schema.get("relationships")
]
cypher_validation = CypherQueryCorrector(corrector_schema)
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
Question: {question}
Cypher query: {query}
Cypher Response: {response}"""
response_prompt = ChatPromptTemplate.from_messages(
[
("system", "Given an input question and Cypher response, convert it to a natural language answer. No pre-amble."),
("human", response_template),
]
)
chain = (
RunnablePassthrough.assign(query=cypher_response)
| RunnablePassthrough.assign(
response=lambda x: graph.query(cypher_validation(x["query"])),
)
| response_prompt
| llm
| StrOutputParser()
)
chain.invoke({"question": "Who played in Casino movie?"})
常见问题和解决方案
-
API访问问题:由于某些地区的网络限制,开发者在使用API时可能需要考虑使用API代理服务,以提高访问稳定性。
-
数据不匹配:在映射过程中可能遇到数据不匹配的问题,建议使用模糊搜索或全文索引来处理拼写错误或数据不一致的问题。
总结和进一步学习资源
本文介绍了如何将用户输入映射到图数据库进行智能查询的步骤。通过这些技术,您可以显著提高自然语言处理与图数据库查询结合的能力。进一步的学习资源包括Neo4j官方文档和LangChain的指南。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---