1、导入相关包
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer, pipeline
2、加载、划分、处理数据集
ds = Dataset.load_from_disk("./data/alpaca_data_zh/")
tokenizer = AutoTokenizer.from_pretrained("./modelscope/Llama-2-7b-ms")
tokenizer.padding_side = "right"
tokenizer.pad_token_id = 2
def process_func(example):
MAX_LENGTH = 1024
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ", add_special_tokens=False)
response = tokenizer(example["output"], add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.eos_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.eos_token_id]
if len(input_ids) > MAX_LENGTH:
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
3、创建模型
import torch
model = AutoModelForCausalLM.from_pretrained("./modelscope/Llama-2-7b-ms", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, device_map="auto")
Lora
PEFT 1、配置文件
from peft import LoraConfig, TaskType, get_peft_model
config = LoraConfig(task_type=TaskType.CAUSAL_LM,)
PEFT 2、创建模型
model = get_peft_model(model, config)
4、创建评估函数
5、创建TrainingArguments、Trainer
model.enable_input_require_grads()
model = model.half()
args = TrainingArguments(
output_dir="./chatbot",
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
logging_steps=10,
num_train_epochs=1,
gradient_checkpointing=True,
adam_epsilon=1e-4
)
trainer = Trainer(
model=model,
args=args,
tokenizer=tokenizer,
train_dataset=tokenized_ds.select(range(6000)),
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
6、模型训练
trainer.train()
7、模型推理
model.eval()
ipt = tokenizer("Human: {}\n{}".format("你好", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
tokenizer.decode(model.generate(**ipt, max_length=512, do_sample=True, eos_token_id=tokenizer.eos_token_id)[0], skip_special_tokens=True)
注意
- LlaMA2模型分词器会将非单独存在的eos_token切开,因此对于eos_token要单独处理,否则训练后的模型在预测时不知道何时停止
- 半精度训练时,正确加入eos_token后,要将pad_token_id也置为eos token_id,否则模型通用无法收敛