5个开源RAG框架对比

495 阅读2分钟

还在为RAG应用开发头疼吗?别急,今天给大家推荐五款完全开源免费的RAG框架,覆盖自动优化、多模态处理、本地部署、生产环境支持等多种场景,助你轻松搞定RAG开发!👇


1. AutoRAG:自动优化,省心省力

🔑 核心优势:自动寻找最优RAG流程,告别手动调参!
特色功能:支持用你的评估数据测试不同RAG模块,找到最适合的方案。
💼 适用场景:适合需要优化RAG系统性能的开发者。


github.com/Marker-Inc-…

2. R2R:多模态数据处理,全能选手

🔑 核心优势:本地化部署,支持多种数据格式,一站式解决!
特色功能

  • 支持文本、PDF、JSON、图片等多种文件格式
  • 结合语义搜索 + 关键词搜索
  • 自动构建知识图谱,提取实体关系
    💼 适用场景:适合需要处理多类型数据源的综合性RAG应用。

github.com/SciPhi-AI/R…


3. n8n AI 工具包:本地部署,隐私无忧

🔑 核心优势:完全本地化部署,数据安全有保障!
技术亮点

  • 使用@ollama运行本地LLM模型
  • 采用@qdrant_engine作为本地向量数据库
    💼 适用场景:适合注重数据隐私、需要本地化部署的团队。
    在这里插入图片描述

github.com/n8n-io/self…


4. Cognita:生产环境,稳定可靠

🔑 核心优势:专为生产环境设计,企业级应用的首选!
特色功能:提供可定制的数据摄入、处理和检索组件,灵活又高效。
💼 适用场景:适合企业级应用部署,需要稳定可靠的RAG框架。

github.com/truefoundry…


5. LLMWare:轻量专业,企业必备

🔑 核心优势:小型专业模型,轻量又高效!
特色功能

  • 提供50+针对企业任务优化的小型模型
  • 支持完整的RAG生命周期
    💼 适用场景:适合企业环境中需要专业化、轻量级解决方案的场景。

github.com/llmware-ai/…