1、导入相关包
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, DataCollatorForLanguageModeling, TrainingArguments, Trainer
2、加载、划分、处理数据集
ds = Dataset.load_from_disk("./wiki_cn_filtered/")
tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-macbert-base")
def process_func(examples):
return tokenizer(examples["completion"], max_length=384, truncation=True)
tokenized_ds = ds.map(process_func, batched=True, remove_columns=ds.column_names)
3、创建模型
model = AutoModelForMaskedLM.from_pretrained("./hfl/chinese-macbert-base")
4、创建评估函数
5、创建TrainingArguments、Trainer
args = TrainingArguments(
output_dir="./masked_lm",
per_device_train_batch_size=32,
logging_steps=10,
num_train_epochs=1
)
trainer = Trainer(
args=args,
model=model,
tokenizer=tokenizer,
train_dataset=tokenized_ds,
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=True, mlm_probability=0.15)
)
6、模型训练、评估、预测
trainer.train()
trainer.evaluate()
7、模型预测
from transformers import pipeline
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer, device=0)
pipe("西安交通[MASK][MASK]博物馆(Xi'an Jiaotong University Museum)是一座位于西安交通大学的博物馆")
pipe("下面是一则[MASK][MASK]新闻。小编报道,近日,游戏产业发展的非常好!")