2.1 代码实现 单链表的实现如下:
///
//
// FileName : slist.h
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-29 9:58:38
// Comment :
//
///
#ifndef SINGLE_LIST_H #define SINGLE_LIST_H
#include <assert.h> #include <crtdbg.h>
#ifdef _DEBUG #define DEBUG_NEW new (_NORMAL_BLOCK, THIS_FILE, LINE) #endif
#ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = FILE; #endif
#ifdef _DEBUG #ifndef ASSERT #define ASSERT assert #endif #else // not _DEBUG #ifndef ASSERT #define ASSERT #endif #endif // _DEBUG
template class CNode { public: T data; CNode *next; CNode() : data(T()), next(NULL) {} CNode(const T &initdata) : data(initdata), next(NULL) {} CNode(const T &initdata, CNode *p) : data(initdata), next(p) {} };
template class CSList { protected: int m_nCount; CNode *m_pNodeHead;
public: CSList(); CSList(const T &initdata); ~CSList();
public: int IsEmpty() const; int GetCount() const; int InsertBefore(const int pos, const T data); int InsertAfter(const int pos, const T data); int AddHead(const T data); int AddTail(const T data); void RemoveAt(const int pos); void RemoveHead(); void RemoveTail(); void RemoveAll(); T& GetTail(); T GetTail() const; T& GetHead(); T GetHead() const; T& GetAt(const int pos); T GetAt(const int pos) const; void SetAt(const int pos, T data); int Find(const T data) const; };
template inline CSList::CSList() : m_nCount(0), m_pNodeHead(NULL) { }
template inline CSList::CSList(const T &initdata) : m_nCount(0), m_pNodeHead(NULL) { AddHead(initdata); }
template inline CSList::~CSList() { RemoveAll(); }
template inline int CSList::IsEmpty() const { return 0 == m_nCount; }
template inline int CSList::AddHead(const T data) { CNode *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
return 0;
pNewNode->data = data;
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
++m_nCount;
return 1;
}
template inline int CSList::AddTail(const T data) { return InsertAfter(GetCount(), data); }
// if success, return the position of the new node. // if fail, return 0. template inline int CSList::InsertBefore(const int pos, const T data) { int i; int nRetPos; CNode *pTmpNode1; CNode *pTmpNode2; CNode *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// insert before head node?
if (1 == pos)
{
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// if the list is not empty and is not inserted before head node,
// seek to the pos of the list and insert the new node before it.
pTmpNode1 = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pNewNode->next = pTmpNode1;
pTmpNode2->next = pNewNode;
nRetPos = pos;
Exit1: ++m_nCount; Exit0: return nRetPos; }
// if success, return the position of the new node. // if fail, return 0. template inline int CSList::InsertAfter(const int pos, const T data) { int i; int nRetPos; CNode *pTmpNode; CNode *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// if the list is not empty,
// seek to the pos of the list and insert the new node after it.
pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pNewNode->next = pTmpNode->next;
pTmpNode->next = pNewNode;
nRetPos = pos + 1;
Exit1: ++m_nCount; Exit0: return nRetPos; }
template inline int CSList::GetCount() const { return m_nCount; }
template inline void CSList::RemoveAt(const int pos) { ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode1;
CNode<T> *pTmpNode2;
pTmpNode1 = m_pNodeHead;
// head node?
if (1 == pos)
{
m_pNodeHead = m_pNodeHead->next;
goto Exit1;
}
for (i = 1; i < pos; ++i)
{
// we will get the previous node of the target node after
// the for loop finished, and it would be stored into pTmpNode2
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pTmpNode2->next = pTmpNode1->next;
Exit1: delete pTmpNode1; --m_nCount; }
template inline void CSList::RemoveHead() { ASSERT(0 != m_nCount); RemoveAt(1); }
template inline void CSList::RemoveTail() { ASSERT(0 != m_nCount); RemoveAt(m_nCount); }
template inline void CSList::RemoveAll() { int i; int nCount; CNode *pTmpNode;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
pTmpNode = m_pNodeHead->next;
delete m_pNodeHead;
m_pNodeHead = pTmpNode;
}
m_nCount = 0;
}
template inline T& CSList::GetTail() { ASSERT(0 != m_nCount);
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template inline T CSList::GetTail() const { ASSERT(0 != m_nCount);
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template inline T& CSList::GetHead() { ASSERT(0 != m_nCount); return m_pNodeHead->data; }
template inline T CSList::GetHead() const { ASSERT(0 != m_nCount); return m_pNodeHead->data; }
template inline T& CSList::GetAt(const int pos) { ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template inline T CSList::GetAt(const int pos) const { ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template inline void CSList::SetAt(const int pos, T data) { ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pTmpNode->data = data;
}
template inline int CSList::Find(const T data) const { int i; int nCount; CNode *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
if (data == pTmpNode->data)
return i + 1;
pTmpNode = pTmpNode->next;
}
return 0;
}
#endif // SINGLE_LIST_H 调用如下:
///
//
// FileName : slist.cpp
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-29 10:41:18
// Comment :
//
///
#include #include "slist.h" using namespace std;
int main() { int i; int nCount; CSList slist;
#ifdef _DEBUG _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); #endif
slist.InsertAfter(slist.InsertAfter(slist.AddHead(1), 2), 3);
slist.InsertAfter(slist.InsertAfter(slist.GetCount(), 4), 5);
slist.InsertAfter(slist.GetCount(), 6);
slist.AddTail(10);
slist.InsertAfter(slist.InsertBefore(slist.GetCount(), 7), 8);
slist.SetAt(slist.GetCount(), 9);
slist.RemoveHead();
slist.RemoveTail();
// print out elements
nCount = slist.GetCount();
for (i = 0; i < nCount; ++i)
cout << slist.GetAt(i + 1) << endl;
} 代码比较简单,一看就明白,懒得解释了。如果有bug,请告诉我。
2.2 效率问题 考虑到效率的问题,代码中声明了一个成员变量:m_nCount,用它来记录链表的结点个数。这样有什么好处呢?在某些情况下就不用遍历链表了,例如,至少在GetCount()时能提高速度。
原书中提到了一个“表头”(header)或“哑结点”(dummy node)的概念,这个结点作为第一个结点,位置在0,它是不用的,我个人认为这样做有点浪费空间,所以并没有采用这种做法。
单链表在效率上最大的问题在于,如果要插入一个结点到链表的末端或者删除末端的一个结点,则需要遍历整个链表,时间复杂度是O(N)。平均来说,要访问一个结点,时间复杂度也有O(N/2)。这是链表本身的性质所造成的,没办法解决。不过我们可以采用双链表和循环链表来改善这种情况。
2.3 应用:一元多项式(加法和乘法)
2.3.1 基础知识 我们使用一元多项式来说明单链表的应用。假设有两个一元多项式:
P1(X) = X^2 + 2X + 3 以及
P2(X) = 3X^3 + 10X + 6 现在运用中学的基础知识,计算它们的和:
P1(X) + P2(X) = (X^2 + 2X + 3) + (3X^3 + 10X + 6) = 3X^3 + 1X^2 + 12X^1 + 9 以及计算它们的乘积:
P1(X) * P2(X) = (X^2 + 2X + 3) * (3X^3 + 10X + 6) = 3X^5 + 6X^4 + 19X^3 + 26X^2 + 42X^1 + 18 怎么样,很容易吧?:) 但我们是灵长类动物,这么繁琐的计算怎么能用手工来完成呢?(试想一下,如果多项式非常大的话……)我们的目标是用计算机来完成这些计算任务,代码就在下面。
2.3.2 代码实现
///
//
// FileName : poly.cpp
// Version : 0.10
// Author : Luo Cong
// Date : 2004-12-30 17:32:54
// Comment :
//
///
#include <stdio.h> #include "slist.h"
#define Max(x,y) (((x)>(y)) ? (x) : (y))
typedef struct tagPOLYNOMIAL { CSList Coeff; int HighPower; } * Polynomial;
static void AddPolynomial( Polynomial polysum, const Polynomial poly1, const Polynomial poly2 ) { int i; int sum; int tmp1; int tmp2;
polysum->HighPower = Max(poly1->HighPower, poly2->HighPower);
for (i = 1; i <= polysum->HighPower + 1; ++i)
{
tmp1 = poly1->Coeff.GetAt(i);
tmp2 = poly2->Coeff.GetAt(i);
sum = tmp1 + tmp2;
polysum->Coeff.AddTail(sum);
}
}
static void MulPolynomial( Polynomial polymul, const Polynomial poly1, const Polynomial poly2 ) { int i; int j; int tmp; int tmp1; int tmp2;
polymul->HighPower = poly1->HighPower + poly2->HighPower;
// initialize all elements to zero
for (i = 0; i <= polymul->HighPower; ++i)
polymul->Coeff.AddTail(0);
for (i = 0; i <= poly1->HighPower; ++i)
{
tmp1 = poly1->Coeff.GetAt(i + 1);
for (j = 0; j <= poly2->HighPower; ++j)
{
tmp = polymul->Coeff.GetAt(i + j + 1);
tmp2 = poly2->Coeff.GetAt(j + 1);
tmp += tmp1 * tmp2;
polymul->Coeff.SetAt(i + j + 1, tmp);
}
}
}
static void PrintPoly(const Polynomial poly) { int i;
for (i = poly->HighPower; i > 0; i-- )
printf( "%dX^%d + ", poly->Coeff.GetAt(i + 1), i);
printf("%d\n", poly->Coeff.GetHead());
}
int main() { Polynomial poly1 = NULL; Polynomial poly2 = NULL; Polynomial polyresult = NULL;
#ifdef _DEBUG _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); #endif
poly1 = new (struct tagPOLYNOMIAL);
if (NULL == poly1)
goto Exit0;
poly2 = new (struct tagPOLYNOMIAL);
if (NULL == poly2)
goto Exit0;
polyresult = new (struct tagPOLYNOMIAL);
if (NULL == polyresult)
goto Exit0;
// P1(X) = X^2 + 2X + 3
poly1->HighPower = 2;
poly1->Coeff.AddHead(0);
poly1->Coeff.AddHead(1);
poly1->Coeff.AddHead(2);
poly1->Coeff.AddHead(3);
// P2(X) = 3X^3 + 10X + 6
poly2->HighPower = 3;
poly2->Coeff.AddHead(3);
poly2->Coeff.AddHead(0);
poly2->Coeff.AddHead(10);
poly2->Coeff.AddHead(6);
// add result = 3X^3 + 1X^2 + 12X^1 + 9
AddPolynomial(polyresult, poly1, poly2);
PrintPoly(polyresult);
// reset
polyresult->Coeff.RemoveAll();
// mul result = 3X^5 + 6X^4 + 19X^3 + 26X^2 + 42X^1 + 18
MulPolynomial(polyresult, poly1, poly2);
PrintPoly(polyresult);
Exit0: if (poly1) { delete poly1; poly1 = NULL; } if (poly2) { delete poly2; poly2 = NULL; } if (polyresult) { delete polyresult; polyresult = NULL; } }
2.3.3 说明 原书中只给出了一元多项式的数组实现,而没有给出单链表的代码。实际上用单链表最大的好处在于多项式的项数可以为任意大。(当然只是理论上的。什么?你的内存是无限大的?好吧,当我没说……)
我没有实现减法操作,实际上减法可以转换成加法来完成,例如 a - b 可以换算成 a + (-b),那么我们的目标就转变为做一个负号的运算了。至于除法,可以通过先换算“-”,然后再用原位加法来计算。(现在你明白加法有多重要了吧?^_^)有兴趣的话,不妨您试试完成它,我的目标只是掌握单链表的使用,因此不再继续深究。 ————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。