(Sherman-Morrison-Woodbury公式更为一般的形式)
设矩阵A∈Rn×n可逆,经过一个秩为m(m≤n)的矩阵修正为A+RSTT ,其中 R,T∈Rn×m , S∈Rm×m.证明:
(A+RSTT)−1=A−1−A−1RU−1TTA−1,
其中U=S−1+TTA−1A−1R.
Proof:
构造矩阵P=[S−1n×mRn×m−TTm×nAn×n]
对矩阵P分别作LDU分解和UDL分解,有
P=[S−1n×mRn×m−TTm×nAn×n]LDU分解[IRSOI][S−1OOA+RST−1][IO−STTI]
P=[S−1n×mRn×m−TTm×nAn×n]LDU分解[IO−TTAI][S−1+TTAROOA][IA−1ROI]
对矩阵P分别求逆,有
P−1==[IOSTTI][SOO(A+RST−1)−1][I−RSOI][S−STT(A+RSTT)−1RS−(A+RSTT)−1RSSTT(A+RSTT)−1(A+RSTT)−1]
P−1==[I−A−1ROI][(S−1+TTAR)−1OOA−1][IOTTAI][(S−1+TTAR)−1−(A+RSTT)−1RS(S−1+TTAR)−1TTAA−1−A−1R(S−1+TTAR)−1TTA]
有矩阵对应元素相等,得
(A+RSTT)−1=A−1−A−1R(S−1+TTA−1A−1R)−1TTA−1.