主从复制,你要知道的一些事(背景知识)

118 阅读17分钟

主备一致就是主从一致,这个是主从同步的背景知识。 本文内容主要如下:

主从同步(背景知识).png

主从同步原理

MySQL主从复制的核心就是二进制日志(DDL(数据定义语言)语句 和 DML(数据操纵语言)语句),它的步骤是这样的:

第一:主库在事务提交时,会把数据变更记录在二进制日志文件 Binlog 中。

第二:从库读取主库的二进制日志文件 Binlog ,写入到从库的中继日志 Relay Log 。

第三:从库重做中继日志中的事件,将改变反映它自己的数据 。

MySQL主备基本原理

在状态 1 中,客户端的读写都直接访问节点 A,而节点 B 是 A 的备库,只是将 A 的更新都同步过来,到本地执行。这样可以保持节点 B 和 A 的数据是相同的。

当需要切换的时候,就切成状态 2。这时候客户端读写访问的都是节点 B,而节点 A 是 B 的备库。

在状态 1 中,虽然节点 B 没有被直接访问,建议把节点 B(也就是备库)设置成只读(readonly)模式。这样做,有以下几个考虑:

  1. 有时候一些运营类的查询语句会被放到备库上去查,设置为只读可以防止误操作;
  2. 防止切换逻辑有 bug,比如切换过程中出现双写,造成主备不一致;
  3. 可以用 readonly 状态,来判断节点的角色。

备库设置成只读了,还怎么跟主库保持同步更新呢?

因为 readonly 设置对超级 (super) 权限用户是无效的,而用于同步更新的线程,就拥有超级权限。

节点 A 到 B 这条线的内部流程是什么样的

可以看到,主库接收到客户端的更新请求后,执行内部事务的更新逻辑,同时写 binlog。

备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。一个事务日志同步的完整过程是这样的:

  1. 在备库 B 上通过 change master 命令,设置主库 A 的 IP、端口、用户名、密码,以及要从哪个位置开始请求 binlog,这个位置包含文件名和日志偏移量。
  2. 在备库 B 上执行 start slave 命令,这时候备库会启动两个线程,就是图中的 io_thread 和 sql_thread。其中 io_thread 负责与主库建立连接。
  3. 主库 A 校验完用户名、密码后,开始按照备库 B 传过来的位置,从本地读取 binlog,发给 B。
  4. 备库 B 拿到 binlog 后,写到本地文件,称为中转日志(relay log)。
  5. sql_thread 读取中转日志,解析出日志里的命令,并执行。

由于多线程复制方案的引入,sql_thread 演化成为了多个线程。

binlog 里面到底是什么内容,为什么备库拿过去可以直接执行?

binlog有三种格式,一种是 statement,一种是 row。一种格式叫作 mixed,

当 binlog_format=statement 时,binlog 里面记录的就是 SQL 语句的原文

与 statement 格式的 binlog 相比,前后的 BEGIN 和 COMMIT 是一样的。但是,row 格式的 binlog 里没有了 SQL 语句的原文,而是替换成了两个 event:Table_map 和 Delete_rows。

  1. Table_map event,用于说明接下来要操作的表是 test 库的表 t;
  2. Delete_rows event,用于定义删除的行为。

为什么会有 mixed 这种 binlog 格式的存在场景?

  • 因为有些 statement 格式的 binlog 可能会导致主备不一致,所以要使用 row 格式。
  • 但 row 格式的缺点是,很占空间。比如你用一个 delete 语句删掉 10 万行数据,用 statement 的话就是一个 SQL 语句被记录到 binlog 中,占用几十个字节的空间。但如果用 row 格式的 binlog,就要把这 10 万条记录都写到 binlog 中。这样做,不仅会占用更大的空间,同时写 binlog 也要耗费 IO 资源,影响执行速度。
  • 所以,MySQL 就取了个折中方案,也就是有了 mixed 格式的 binlog。mixed 格式的意思是,MySQL 自己会判断这条 SQL 语句是否可能引起主备不一致,如果有可能,就用 row 格式,否则就用 statement 格式。

也就是说,mixed 格式可以利用 statment 格式的优点,同时又避免了数据不一致的风险。

MySQL 的 binlog 格式设置成 row,对恢复数据有什么好处?

就分别从 delete、insert 和 update 这三种 SQL 语句的角度,来看看数据恢复的问题。

我执行的是 delete 语句,row 格式的 binlog 也会把被删掉的行的整行信息保存起来。所以,如果你在执行完一条 delete 语句以后,发现删错数据了,可以直接把 binlog 中记录的 delete 语句转成 insert,把被错删的数据插入回去就可以恢复了。

如果是执行错了 insert 语句呢?那就更直接了。row 格式下,insert 语句的 binlog 里会记录所有的字段信息,这些信息可以用来精确定位刚刚被插入的那一行。这时,你直接把 insert 语句转成 delete 语句,删除掉这被误插入的一行数据就可以了。

如果执行的是 update 语句的话,binlog 里面会记录修改前整行的数据和修改后的整行数据。所以,如果你误执行了 update 语句的话,只需要把这个 event 前后的两行信息对调一下,再去数据库里面执行,就能恢复这个更新操作了。

循环复制问题

正常情况下主备的数据是一致的。但这是指M-S结构的。M-M结构呢?

双 M 结构和 M-S 结构,区别是多了一条线,即:节点 A 和 B 之间总是互为主备关系。这样在切换的时候就不用再修改主备关系。

双 M 结构还有一个问题需要解决。就是循环复制问题。

场景复现:

业务逻辑在节点 A 上更新了一条语句,然后再把生成的 binlog 发给节点 B,节点 B 执行完这条更新语句后也会生成 binlog。(我建议你把参数 log_slave_updates 设置为 on,表示备库执行 relay log 后生成 binlog)。

那么,如果节点 A 同时是节点 B 的备库,相当于又把节点 B 新生成的 binlog 拿过来执行了一次,然后节点 A 和 B 间,会不断地循环执行这个更新语句,也就是循环复制了。这个要怎么解决呢?

MySQL 在 binlog 中记录了这个命令第一次执行时所在实例的 server id。

用下面的逻辑,来解决两个节点间的循环复制的问题:

  1. 规定两个库的 server id 必须不同,如果相同,则它们之间不能设定为主备关系;
  2. 一个备库接到 binlog 并在重放的过程中,生成与原 binlog 的 server id 相同的新的 binlog;
  3. 每个库在收到从自己的主库发过来的日志后,先判断 server id,如果跟自己的相同,表示这个日志是自己生成的,就直接丢弃这个日志。

按照这个逻辑,如果我们设置了双 M 结构,日志的执行流就会变成这样:

  1. 从节点 A 更新的事务,binlog 里面记的都是 A 的 server id;
  2. 传到节点 B 执行一次以后,节点 B 生成的 binlog 的 server id 也是 A 的 server id;
  3. 再传回给节点 A,A 判断到这个 server id 与自己的相同,就不会再处理这个日志。所以,死循环在这里就断掉了。

拓展问题

MySQL 通过判断 server id 的方式,断掉死循环。但是,这个机制其实并不完备,在某些场景下,还是有可能出现死循环。能构造出一个这样的场景吗?又应该怎么解决呢?

一种场景是,在一个主库更新事务后,用命令 set global server_id=x 修改了 server_id。等日志再传回来的时候,发现 server_id 跟自己的 server_id 不同,就只能执行了。

另一种场景是,有三个节点的时候,trx1 是在节点 B 执行的,因此 binlog 上的 server_id 就是 B,binlog 传给节点 A,然后 A 和 A’搭建了双 M 结构,就会出现循环复制。这种三节点复制的场景,做数据库迁移的时候会出现。

如果出现了循环复制,可以在 A 或者 A’上,执行如下命令:

stop slave;
CHANGE MASTER TO IGNORE_SERVER_IDS=(server_id_of_B);
start slave;

MySQL是怎么保证高可用的?

在一个主备关系中,每个备库接收主库的 binlog 并执行。

正常情况下,只要主库执行更新生成的所有 binlog,都可以传到备库并被正确地执行,备库就能达到跟主库一致的状态,这就是最终一致性。

但是,MySQL 要提供高可用能力,只有最终一致性是不够的。为什么这么说呢?

MySQL 主备切换流程 -- 双 M 结构

主备延迟

主备切换可能是一个主动运维动作,比如软件升级、主库所在机器按计划下线等,也可能是被动操作,比如主库所在机器掉电。

先说明一个概念,即“同步延迟”。与数据同步有关的时间点主要包括以下三个:

  1. 主库 A 执行完成一个事务,写入 binlog,我们把这个时刻记为 T1;
  2. 之后传给备库 B,我们把备库 B 接收完这个 binlog 的时刻记为 T2;
  3. 备库 B 执行完成这个事务,我们把这个时刻记为 T3。

从“同步延迟”引出我们主备延迟概念。

所谓主备延迟,就是同一个事务,在备库执行完成的时间和主库执行完成的时间之间的差值,也就是 T3-T1。

你可以在备库上执行 show slave status 命令,它的返回结果里面会显示 seconds_behind_master,用于表示当前备库延迟了多少秒。

seconds_behind_master 的计算方法是这样的:

  1. 每个事务的 binlog 里面都有一个时间字段,用于记录主库上写入的时间;
  2. 备库取出当前正在执行的事务的时间字段的值,计算它与当前系统时间的差值,得到 seconds_behind_master。

可以看到,其实 seconds_behind_master 这个参数计算的就是 T3-T1。所以,我们可以用 seconds_behind_master 来作为主备延迟的值,这个值的时间精度是秒。

如果主备库机器的系统时间设置不一致,会不会导致主备延迟的值不准?

其实不会的。因为,备库连接到主库的时候,会通过执行 SELECT UNIX_TIMESTAMP() 函数来获得当前主库的系统时间。如果这时候发现主库的系统时间与自己不一致,备库在执行 seconds_behind_master 计算的时候会自动扣掉这个差值。

需要说明的是,在网络正常的时候,日志从主库传给备库所需的时间是很短的,即 T2-T1 的值是非常小的。也就是说,网络正常情况下,主备延迟的主要来源是备库接收完 binlog 和执行完这个事务之间的时间差。

所以说,主备延迟最直接的表现是,备库消费中转日志(relay log)的速度,比主库生产 binlog 的速度要慢。

是什么造成了主备延迟?

一、有些部署条件下,备库所在机器的性能要比主库所在的机器性能差。

一般情况下,有人这么部署时的想法是,反正备库没有请求,所以可以用差一点儿的机器。或者,他们会把 20 个主库放在 4 台机器上,而把备库集中在一台机器上。

其实我们都知道,更新请求对 IOPS 的压力,在主库和备库上是无差别的。所以,做这种部署时,一般都会将备库设置为“非双 1”的模式。

但实际上,更新过程中也会触发大量的读操作。所以,当备库主机上的多个备库都在争抢资源的时候,就可能会导致主备延迟了。

当然,这种部署现在比较少了。因为主备可能发生切换,备库随时可能变成主库,所以主备库选用相同规格的机器,并且做对称部署,是现在比较常见的情况。

追问 1:但是,做了对称部署以后,还可能会有延迟。这是为什么呢?

这就是第二种常见的可能了,即备库的压力大。一般的想法是,主库既然提供了写能力,那么备库可以提供一些读能力。或者一些运营后台需要的分析语句,不能影响正常业务,所以只能在备库上跑。

由于主库直接影响业务,大家使用起来会比较克制,反而忽视了备库的压力控制。结果就是,备库上的查询耗费了大量的 CPU 资源,影响了同步速度,造成主备延迟。

这种情况,我们一般可以这么处理:

  1. 一主多从。除了备库外,可以多接几个从库,让这些从库来分担读的压力。
  2. 通过 binlog 输出到外部系统,比如 Hadoop 这类系统,让外部系统提供统计类查询的能力。

其中,一主多从的方式大都会被采用。因为作为数据库系统,还必须保证有定期全量备份的能力。而从库,就很适合用来做备份。

追问 2:采用了一主多从,保证备库的压力不会超过主库,还有什么情况可能导致主备延迟吗?

这是第三种可能了,即大事务。

大事务这种情况很好理解。因为主库上必须等事务执行完成才会写入 binlog,再传给备库。所以,如果一个主库上的语句执行 10 分钟,那这个事务很可能就会导致从库延迟 10 分钟。

不要一次性地用 delete 语句删除太多数据

比如,一些归档类的数据,平时没有注意删除历史数据,等到空间快满了,业务开发人员要一次性地删掉大量历史数据。同时,又因为要避免在高峰期操作会影响业务(至少有这个意识还是很不错的),所以会在晚上执行这些大量数据的删除操作。

结果,负责的 DBA 同事半夜就会收到延迟报警。然后,DBA 团队就要求后续再删除数据的时候,要控制每个事务删除的数据量,分成多次删除。

另一种典型的大事务场景,就是大表 DDL。

追问 3:如果主库上也不做大事务了,还有什么原因会导致主备延迟吗?

造成主备延迟还有一个大方向的原因,就是备库的并行复制能力

由于主备延迟的存在,所以在主备切换的时候,就相应的有不同的策略。

可靠性优先策略

在图 中 的双 M 结构下,从状态 1 到状态 2 切换的详细过程是这样的:

  1. 判断备库 B 现在的 seconds_behind_master,如果小于某个值(比如 5 秒)继续下一步,否则持续重试这一步;
  2. 把主库 A 改成只读状态,即把 readonly 设置为 true;
  3. 判断备库 B 的 seconds_behind_master 的值,直到这个值变成 0 为止;
  4. 把备库 B 改成可读写状态,也就是把 readonly 设置为 false;
  5. 把业务请求切到备库 B。

这个切换流程,一般是由专门的 HA 系统来完成的,我们暂时称之为可靠性优先流程。

MySQL 可靠性优先主备切换流程

图中的 SBM,是 seconds_behind_master 参数的简写。

可以看到,这个切换流程中是有不可用时间的。因为在步骤 2 之后,主库 A 和备库 B 都处于 readonly 状态,也就是说这时系统处于不可写状态,直到步骤 5 完成后才能恢复。

在这个不可用状态中,比较耗费时间的是步骤 3,可能需要耗费好几秒的时间。这也是为什么需要在步骤 1 先做判断,确保 seconds_behind_master 的值足够小。

试想如果一开始主备延迟就长达 30 分钟,而不先做判断直接切换的话,系统的不可用时间就会长达 30 分钟,这种情况一般业务都是不可接受的。

当然,系统的不可用时间,是由这个数据可靠性优先的策略决定的。我们可以选择可用性优先的策略,来把这个不可用时间几乎降为 0。

可用性优先策略

如果强行把步骤 4、5 调整到最开始执行,也就是说不等主备数据同步,直接把连接切到备库 B,并且让备库 B 可以读写,那么系统几乎就没有不可用时间了。

我们把这个切换流程,暂时称作可用性优先流程。这个切换流程的代价,就是可能出现数据不一致的情况。

假设有一个表 t:

mysql> CREATE TABLE `t` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `c` int(11) unsigned DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;
 
insert into t(c) values(1),(2),(3);

这个表定义了一个自增主键 id,初始化数据后,主库和备库上都是 3 行数据。接下来,业务人员要继续在表 t 上执行两条插入语句的命令,依次是:

insert into t(c) values(4);

insert into t(c) values(5);

假设,现在主库上其他的数据表有大量的更新,导致主备延迟达到 5 秒。在插入一条 c=4 的语句后,发起了主备切换。

下图 是可用性优先策略,且 binlog_format=mixed时的切换流程和数据结果。

现在,我们一起分析下这个切换流程:

  1. 步骤 2 中,主库 A 执行完 insert 语句,插入了一行数据(4,4),之后开始进行主备切换。
  2. 步骤 3 中,由于主备之间有 5 秒的延迟,所以备库 B 还没来得及应用“插入 c=4”这个中转日志,就开始接收客户端“插入 c=5”的命令。
  3. 步骤 4 中,备库 B 插入了一行数据(4,5),并且把这个 binlog 发给主库 A。
  4. 步骤 5 中,备库 B 执行“插入 c=4”这个中转日志,插入了一行数据(5,4)。而直接在备库 B 执行的“插入 c=5”这个语句,传到主库 A,就插入了一行新数据(5,5)。

最后的结果就是,主库 A 和备库 B 上出现了两行不一致的数据。可以看到,这个数据不一致,是由可用性优先流程导致的。

那么,如果还是用可用性优先策略,但设置 binlog_format=row,情况又会怎样呢?

因为 row 格式在记录 binlog 的时候,会记录新插入的行的所有字段值,所以最后只会有一行不一致。而且,两边的主备同步的应用线程会报错 duplicate key error 并停止。也就是说,这种情况下,备库 B 的 (5,4) 和主库 A 的 (5,5) 这两行数据,都不会被对方执行。

可以看到一些结论:

  1. 使用 row 格式的 binlog 时,数据不一致的问题更容易被发现。而使用 mixed 或者 statement 格式的 binlog 时,数据很可能悄悄地就不一致了。如果过了很久才发现数据不一致的问题,很可能这时的数据不一致已经不可查,或者连带造成了更多的数据逻辑不一致。
  2. 主备切换的可用性优先策略会导致数据不一致。因此,大多数情况下,建议使用可靠性优先策略。毕竟对数据服务来说的话,数据的可靠性一般还是要优于可用性的。