LeetCode - Medium - 450

67 阅读2分钟
  • The number of nodes in the tree is in the range [ 0 , 1 0 4 ] [0, 10^4] [0,104].

  • − 1 0 5 < = N o d e . v a l < = 1 0 5 -10^5 <= Node.val <= 10^5 −105<=Node.val<=105

  • Each node has a unique value.

  • root is a valid binary search tree.

  • − 1 0 5 < = k e y < = 1 0 5 -10^5 <= key <= 10^5 −105<=key<=105

Analysis


方法一:我写的。

  1. 找出目标节点,找到即返回它和它的父节点,找不到直接结束算法。

  2. 如果目标节点是根节点,就给它弄个临时父节点,原根节点成为它的左子树。

  3. 根据目标节点的左右子树的有无指定删除方案:

  • 目标节点是叶子节点,或只有一个左子树,或只有一个右子树,则采用类似单链表删除节点方法(这就需要用到目标节点的父节点)。

  • 目标节点都有左右子树,则从右子树中查找出最小值节点,让它值替换目标节点值,随后在右子树移除最小值节点。由于BST的性质,最小值节点有么是叶子节点,有么只有右子树,只有这两种情况,则放心采用类似单链表删除节点方法移除最小值节点。

  1. 最后,返回根节点。如果目标节点是根节点,则返回临时父节点的左子树。

方法二:别人写的,递归版,精简优雅。

  1. Recursively find the node that has the same value as the key, while setting the left/right nodes equal to the returned subtree.
  1. Once the node is found, have to handle the below 4 cases:
*   node doesn’t have left or right - return null
*   node only has left subtree- return the left subtree
*   node only has right subtree- return the right subtree
*   node has both left and right - find the minimum value in the right subtree, set that value to the currently found node, then  
    recursively delete the minimum value in the right subtree  
    [link](https://docs.qq.com/doc/DSmRnRGxvUkxTREhO)

Submission


import com.lun.util.BinaryTree.TreeNode;

public class DeleteNodeInABST {

//方法一:我写的

public TreeNode deleteNode(TreeNode root, int key) {

TreeNode[] result = find(root, key);

if(result != null) {

TreeNode parent = result[0], target = result[1];

TreeNode fakeRoot = null;

if(parent == null) {//删除根节点,弄个假根节点,原

fakeRoot = new TreeNode(Integer.MAX_VALUE, root, null);

}

if(target.left != null && target.right != null) {//既有左子树,有右子树

TreeNode replaceOne = findReplaceOneFromRight(target, target.right);

target.val = replaceOne.val;

}else {

removeEasyOne(parent == null ? fakeRoot: parent, target);

}

if(parent == null) {//删除根节点的情况

root = fakeRoot.left;

fakeRoot.left = null;

}

}

return root;

}

private TreeNode[] find(TreeNode root, int key) {

TreeNode last = null, curr = root;

while(curr != null) {

if(key < curr.val) {

last = curr;

curr = curr.left;

}else if(curr.val < key){

last = curr;

curr = curr.right;

}else {

return new TreeNode[] {last, curr};

}

}

return null;

}

/**

  • target是叶子节点,target只有左子树,target只有右子数,这三种情况可以用链表式方法的删除节点

*/

private void removeEasyOne(TreeNode parent, TreeNode target) {

if(target.left == null && target.right == null) {//target是叶子节点

if(parent.left == target){

parent.left = null;

}else {

parent.right = null;

}

}else if(target.left != null && target.right == null){//target只有左子树

if(parent.left == target){

parent.left = target.left;

target.left = null;

}else {

parent.right = target.left;

target.left = null;

}

}else if(target.left == null && target.right != null){//target只有右子数

if(parent.left == target){

parent.left = target.right;

target.right = null;

}else {

parent.right = target.right;

target.right = null;

}

}

}

//查找右子树的最小值

private TreeNode findReplaceOneFromRight(TreeNode last, TreeNode child) {

if(child == null) return null;

while(child.left != null) {//

last = child;

child = child.left;

}

removeEasyOne(last, child);

return child;

}

//方法二:别人写的,递归版,精简优雅了许多

public TreeNode deleteNode2(TreeNode root, int key) {

if(root == null){

return null;

}

if(key < root.val){

root.left = deleteNode2(root.left, key);

}else if(key > root.val){

root.right = deleteNode2(root.right, key);

}else{

if(root.left == null){

return root.right;

}else if(root.right == null){

return root.left;

}

TreeNode minNode = findMin(root.right);

root.val = minNode.val;

root.right = deleteNode2(root.right, root.val);

}

return root;

}

private TreeNode findMin(TreeNode node){

while(node.left != null){

node = node.left;

}

return node;

}

}

Test


import static org.junit.Assert.*;

import org.junit.Test;

import com.lun.util.BinaryTree;

import com.lun.util.BinaryTree.TreeNode;

public class DeleteNodeInABSTTest {

@Test

public void test() {

DeleteNodeInABST obj = new DeleteNodeInABST();

TreeNode root1 = obj.deleteNode(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 3);

TreeNode expected1 = BinaryTree.integers2BinaryTree(5,4,6,2,null,null,7);

assertTrue(BinaryTree.equals(root1, expected1));

TreeNode root2 = obj.deleteNode(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 0);

TreeNode expected2 = BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7);

assertTrue(BinaryTree.equals(root2, expected2));

assertNull(obj.deleteNode(null, 0));

//删除根节点

TreeNode root3 = obj.deleteNode(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 5);

TreeNode expected3 = BinaryTree.integers2BinaryTree(6,3,7,2,4);

assertTrue(BinaryTree.equals(root3, expected3));

assertNull(obj.deleteNode(new TreeNode(0), 0));

}

@Test

public void test2() {

DeleteNodeInABST obj = new DeleteNodeInABST();

TreeNode root1 = obj.deleteNode2(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 3);

TreeNode expected1 = BinaryTree.integers2BinaryTree(5,4,6,2,null,null,7);

assertTrue(BinaryTree.equals(root1, expected1));

TreeNode root2 = obj.deleteNode2(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 0);

TreeNode expected2 = BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7);

assertTrue(BinaryTree.equals(root2, expected2));

assertNull(obj.deleteNode2(null, 0));

//删除根节点

TreeNode root3 = obj.deleteNode2(BinaryTree.integers2BinaryTree(5,3,6,2,4,null,7), 5);

TreeNode expected3 = BinaryTree.integers2BinaryTree(6,3,7,2,4);

assertTrue(BinaryTree.equals(root3, expected3));

最后

前15.PNG

前16.PNG

由于文档内容过多,为了避免影响到大家的阅读体验,在此只以截图展示部分内容

开源分享:docs.qq.com/doc/DSmRnRG…