题目
- 给定一个二叉树的,判断是否为二叉搜索树
- 二叉搜索树满足,任一节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数
思路
-
递归判断
- 对于 node 的 left,除了满足要小于当前 node,若是某节点的左子树,还需要大于左子树的根节点
- 递归判断 node left 是否为二叉搜索树,更新右子树的最小值
- 对于 node 的 right,除了满足大于当前 node,若是某节点的右子树,还需要小于右子树的根节点
- 递归判断 node right 是否为二叉搜索树,更新左子树的最大值
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool check(TreeNode* node, bool is_left_min, int left_min, bool is_right_max, int right_max) {
if (node == nullptr) return true;
bool mark = true;
if (node->left) {
if (!(node->val > node->left->val)) return false;
if (is_left_min && !(node->left->val > left_min)) return false;
if (is_right_max == false) {
mark = check(node->left, is_left_min, left_min, true, node->val);
} else {
mark = check(node->left, is_left_min, left_min, is_right_max, min(node->val, right_max));
}
}
if (!mark) return false;
if (node->right) {
if (!(node->val < node->right->val)) return false;
if (is_right_max && !(node->right->val < right_max)) return false;
if (is_left_min == false) {
mark = check(node->right, true, node->val, is_right_max, right_max);
} else {
mark = check(node->right, is_left_min, max(left_min, node->val), is_right_max, right_max);
}
}
if (!mark) return false;
return true;
}
bool isValidBST(TreeNode* root) {
return check(root, 0, root->val, 0, root->val);
}
};